Metamath Proof Explorer


Theorem dvcnp

Description: The difference quotient is continuous at B when the original function is differentiable at B . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvcnp.j J=K𝑡A
dvcnp.k K=TopOpenfld
dvcnp.g G=zAifz=BFSBFzFBzB
Assertion dvcnp SF:AASBdomFSGJCnPKB

Proof

Step Hyp Ref Expression
1 dvcnp.j J=K𝑡A
2 dvcnp.k K=TopOpenfld
3 dvcnp.g G=zAifz=BFSBFzFBzB
4 dvfg SFS:domFS
5 4 3ad2ant1 SF:AASFS:domFS
6 ffun FS:domFSFunFS
7 funfvbrb FunFSBdomFSBFSFSB
8 5 6 7 3syl SF:AASBdomFSBFSFSB
9 eqid K𝑡S=K𝑡S
10 eqid zABFzFBzB=zABFzFBzB
11 recnprss SS
12 11 3ad2ant1 SF:AASS
13 simp2 SF:AASF:A
14 simp3 SF:AASAS
15 9 2 10 12 13 14 eldv SF:AASBFSFSBBintK𝑡SAFSBzABFzFBzBlimB
16 8 15 bitrd SF:AASBdomFSBintK𝑡SAFSBzABFzFBzBlimB
17 16 simplbda SF:AASBdomFSFSBzABFzFBzBlimB
18 14 12 sstrd SF:AASA
19 18 adantr SF:AASBdomFSA
20 12 13 14 dvbss SF:AASdomFSA
21 20 sselda SF:AASBdomFSBA
22 eldifsn zABzAzB
23 13 adantr SF:AASBdomFSF:A
24 23 19 21 dvlem SF:AASBdomFSzABFzFBzB
25 22 24 sylan2br SF:AASBdomFSzAzBFzFBzB
26 19 21 25 1 2 limcmpt2 SF:AASBdomFSFSBzABFzFBzBlimBzAifz=BFSBFzFBzBJCnPKB
27 17 26 mpbid SF:AASBdomFSzAifz=BFSBFzFBzBJCnPKB
28 3 27 eqeltrid SF:AASBdomFSGJCnPKB