Description: The difference quotient is continuous at B when the original function is differentiable at B . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvcnp.j | |
|
dvcnp.k | |
||
dvcnp.g | |
||
Assertion | dvcnp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcnp.j | |
|
2 | dvcnp.k | |
|
3 | dvcnp.g | |
|
4 | dvfg | |
|
5 | 4 | 3ad2ant1 | |
6 | ffun | |
|
7 | funfvbrb | |
|
8 | 5 6 7 | 3syl | |
9 | eqid | |
|
10 | eqid | |
|
11 | recnprss | |
|
12 | 11 | 3ad2ant1 | |
13 | simp2 | |
|
14 | simp3 | |
|
15 | 9 2 10 12 13 14 | eldv | |
16 | 8 15 | bitrd | |
17 | 16 | simplbda | |
18 | 14 12 | sstrd | |
19 | 18 | adantr | |
20 | 12 13 14 | dvbss | |
21 | 20 | sselda | |
22 | eldifsn | |
|
23 | 13 | adantr | |
24 | 23 19 21 | dvlem | |
25 | 22 24 | sylan2br | |
26 | 19 21 25 1 2 | limcmpt2 | |
27 | 17 26 | mpbid | |
28 | 3 27 | eqeltrid | |