Metamath Proof Explorer


Theorem dvcnp

Description: The difference quotient is continuous at B when the original function is differentiable at B . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvcnp.j J = K 𝑡 A
dvcnp.k K = TopOpen fld
dvcnp.g G = z A if z = B F S B F z F B z B
Assertion dvcnp S F : A A S B dom F S G J CnP K B

Proof

Step Hyp Ref Expression
1 dvcnp.j J = K 𝑡 A
2 dvcnp.k K = TopOpen fld
3 dvcnp.g G = z A if z = B F S B F z F B z B
4 dvfg S F S : dom F S
5 4 3ad2ant1 S F : A A S F S : dom F S
6 ffun F S : dom F S Fun F S
7 funfvbrb Fun F S B dom F S B F S F S B
8 5 6 7 3syl S F : A A S B dom F S B F S F S B
9 eqid K 𝑡 S = K 𝑡 S
10 eqid z A B F z F B z B = z A B F z F B z B
11 recnprss S S
12 11 3ad2ant1 S F : A A S S
13 simp2 S F : A A S F : A
14 simp3 S F : A A S A S
15 9 2 10 12 13 14 eldv S F : A A S B F S F S B B int K 𝑡 S A F S B z A B F z F B z B lim B
16 8 15 bitrd S F : A A S B dom F S B int K 𝑡 S A F S B z A B F z F B z B lim B
17 16 simplbda S F : A A S B dom F S F S B z A B F z F B z B lim B
18 14 12 sstrd S F : A A S A
19 18 adantr S F : A A S B dom F S A
20 12 13 14 dvbss S F : A A S dom F S A
21 20 sselda S F : A A S B dom F S B A
22 eldifsn z A B z A z B
23 13 adantr S F : A A S B dom F S F : A
24 23 19 21 dvlem S F : A A S B dom F S z A B F z F B z B
25 22 24 sylan2br S F : A A S B dom F S z A z B F z F B z B
26 19 21 25 1 2 limcmpt2 S F : A A S B dom F S F S B z A B F z F B z B lim B z A if z = B F S B F z F B z B J CnP K B
27 17 26 mpbid S F : A A S B dom F S z A if z = B F S B F z F B z B J CnP K B
28 3 27 eqeltrid S F : A A S B dom F S G J CnP K B