Metamath Proof Explorer


Theorem dvlem

Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvlem.1 φF:D
dvlem.2 φD
dvlem.3 φBD
Assertion dvlem φADBFAFBAB

Proof

Step Hyp Ref Expression
1 dvlem.1 φF:D
2 dvlem.2 φD
3 dvlem.3 φBD
4 eldifsn ADBADAB
5 1 adantr φADABF:D
6 simprl φADABAD
7 5 6 ffvelcdmd φADABFA
8 3 adantr φADABBD
9 5 8 ffvelcdmd φADABFB
10 7 9 subcld φADABFAFB
11 2 adantr φADABD
12 11 6 sseldd φADABA
13 11 8 sseldd φADABB
14 12 13 subcld φADABAB
15 simprr φADABAB
16 12 13 15 subne0d φADABAB0
17 10 14 16 divcld φADABFAFBAB
18 4 17 sylan2b φADBFAFBAB