Step |
Hyp |
Ref |
Expression |
1 |
|
dfef2.1 |
|- ( ph -> F e. V ) |
2 |
|
dfef2.2 |
|- ( ph -> A e. CC ) |
3 |
|
dfef2.3 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( 1 + ( A / k ) ) ^ k ) ) |
4 |
|
ax-1cn |
|- 1 e. CC |
5 |
|
simpl |
|- ( ( A e. CC /\ x e. NN ) -> A e. CC ) |
6 |
|
nncn |
|- ( x e. NN -> x e. CC ) |
7 |
6
|
adantl |
|- ( ( A e. CC /\ x e. NN ) -> x e. CC ) |
8 |
|
nnne0 |
|- ( x e. NN -> x =/= 0 ) |
9 |
8
|
adantl |
|- ( ( A e. CC /\ x e. NN ) -> x =/= 0 ) |
10 |
5 7 9
|
divcld |
|- ( ( A e. CC /\ x e. NN ) -> ( A / x ) e. CC ) |
11 |
|
addcl |
|- ( ( 1 e. CC /\ ( A / x ) e. CC ) -> ( 1 + ( A / x ) ) e. CC ) |
12 |
4 10 11
|
sylancr |
|- ( ( A e. CC /\ x e. NN ) -> ( 1 + ( A / x ) ) e. CC ) |
13 |
|
nnnn0 |
|- ( x e. NN -> x e. NN0 ) |
14 |
13
|
adantl |
|- ( ( A e. CC /\ x e. NN ) -> x e. NN0 ) |
15 |
|
cxpexp |
|- ( ( ( 1 + ( A / x ) ) e. CC /\ x e. NN0 ) -> ( ( 1 + ( A / x ) ) ^c x ) = ( ( 1 + ( A / x ) ) ^ x ) ) |
16 |
12 14 15
|
syl2anc |
|- ( ( A e. CC /\ x e. NN ) -> ( ( 1 + ( A / x ) ) ^c x ) = ( ( 1 + ( A / x ) ) ^ x ) ) |
17 |
16
|
mpteq2dva |
|- ( A e. CC -> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^c x ) ) = ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ) |
18 |
|
nnrp |
|- ( x e. NN -> x e. RR+ ) |
19 |
18
|
ssriv |
|- NN C_ RR+ |
20 |
19
|
a1i |
|- ( A e. CC -> NN C_ RR+ ) |
21 |
|
eqid |
|- ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) = ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) |
22 |
21
|
efrlim |
|- ( A e. CC -> ( x e. RR+ |-> ( ( 1 + ( A / x ) ) ^c x ) ) ~~>r ( exp ` A ) ) |
23 |
20 22
|
rlimres2 |
|- ( A e. CC -> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^c x ) ) ~~>r ( exp ` A ) ) |
24 |
17 23
|
eqbrtrrd |
|- ( A e. CC -> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ~~>r ( exp ` A ) ) |
25 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
26 |
|
1zzd |
|- ( A e. CC -> 1 e. ZZ ) |
27 |
12 14
|
expcld |
|- ( ( A e. CC /\ x e. NN ) -> ( ( 1 + ( A / x ) ) ^ x ) e. CC ) |
28 |
27
|
fmpttd |
|- ( A e. CC -> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) : NN --> CC ) |
29 |
25 26 28
|
rlimclim |
|- ( A e. CC -> ( ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ~~>r ( exp ` A ) <-> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ~~> ( exp ` A ) ) ) |
30 |
24 29
|
mpbid |
|- ( A e. CC -> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ~~> ( exp ` A ) ) |
31 |
2 30
|
syl |
|- ( ph -> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ~~> ( exp ` A ) ) |
32 |
|
nnex |
|- NN e. _V |
33 |
32
|
mptex |
|- ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) e. _V |
34 |
33
|
a1i |
|- ( ph -> ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) e. _V ) |
35 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
36 |
|
oveq2 |
|- ( x = k -> ( A / x ) = ( A / k ) ) |
37 |
36
|
oveq2d |
|- ( x = k -> ( 1 + ( A / x ) ) = ( 1 + ( A / k ) ) ) |
38 |
|
id |
|- ( x = k -> x = k ) |
39 |
37 38
|
oveq12d |
|- ( x = k -> ( ( 1 + ( A / x ) ) ^ x ) = ( ( 1 + ( A / k ) ) ^ k ) ) |
40 |
|
eqid |
|- ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) = ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) |
41 |
|
ovex |
|- ( ( 1 + ( A / k ) ) ^ k ) e. _V |
42 |
39 40 41
|
fvmpt |
|- ( k e. NN -> ( ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ` k ) = ( ( 1 + ( A / k ) ) ^ k ) ) |
43 |
42
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ` k ) = ( ( 1 + ( A / k ) ) ^ k ) ) |
44 |
43 3
|
eqtr4d |
|- ( ( ph /\ k e. NN ) -> ( ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ` k ) = ( F ` k ) ) |
45 |
25 34 1 35 44
|
climeq |
|- ( ph -> ( ( x e. NN |-> ( ( 1 + ( A / x ) ) ^ x ) ) ~~> ( exp ` A ) <-> F ~~> ( exp ` A ) ) ) |
46 |
31 45
|
mpbid |
|- ( ph -> F ~~> ( exp ` A ) ) |