| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrlimcnp.a |
|
| 2 |
|
xrlimcnp.b |
|
| 3 |
|
xrlimcnp.r |
|
| 4 |
|
xrlimcnp.c |
|
| 5 |
|
xrlimcnp.j |
|
| 6 |
|
xrlimcnp.k |
|
| 7 |
3
|
fmpttd |
|
| 8 |
7
|
adantr |
|
| 9 |
|
eqid |
|
| 10 |
|
ssun2 |
|
| 11 |
|
pnfex |
|
| 12 |
11
|
snid |
|
| 13 |
10 12
|
sselii |
|
| 14 |
13 1
|
eleqtrrid |
|
| 15 |
4
|
eleq1d |
|
| 16 |
3
|
ralrimiva |
|
| 17 |
15 16 14
|
rspcdva |
|
| 18 |
9 4 14 17
|
fvmptd3 |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
19
|
eleq1d |
|
| 21 |
|
cnxmet |
|
| 22 |
5
|
cnfldtopn |
|
| 23 |
22
|
mopni2 |
|
| 24 |
21 23
|
mp3an1 |
|
| 25 |
|
ssun1 |
|
| 26 |
25 1
|
sseqtrrid |
|
| 27 |
|
ssralv |
|
| 28 |
26 16 27
|
sylc |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
|
simprl |
|
| 31 |
|
simplr |
|
| 32 |
29 30 31
|
rlimi |
|
| 33 |
|
letop |
|
| 34 |
|
ressxr |
|
| 35 |
2 34
|
sstrdi |
|
| 36 |
|
pnfxr |
|
| 37 |
36
|
a1i |
|
| 38 |
37
|
snssd |
|
| 39 |
35 38
|
unssd |
|
| 40 |
1 39
|
eqsstrd |
|
| 41 |
|
xrex |
|
| 42 |
41
|
ssex |
|
| 43 |
40 42
|
syl |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
|
iocpnfordt |
|
| 46 |
45
|
a1i |
|
| 47 |
|
elrestr |
|
| 48 |
33 44 46 47
|
mp3an2i |
|
| 49 |
48 6
|
eleqtrrdi |
|
| 50 |
|
simprl |
|
| 51 |
50
|
rexrd |
|
| 52 |
36
|
a1i |
|
| 53 |
50
|
ltpnfd |
|
| 54 |
|
ubioc1 |
|
| 55 |
51 52 53 54
|
syl3anc |
|
| 56 |
14
|
ad2antrr |
|
| 57 |
55 56
|
elind |
|
| 58 |
|
simplr |
|
| 59 |
58
|
rexrd |
|
| 60 |
|
elioc1 |
|
| 61 |
59 36 60
|
sylancl |
|
| 62 |
|
simp2 |
|
| 63 |
61 62
|
biimtrdi |
|
| 64 |
2
|
ad2antrr |
|
| 65 |
64
|
sselda |
|
| 66 |
|
ltle |
|
| 67 |
58 65 66
|
syl2anc |
|
| 68 |
63 67
|
syld |
|
| 69 |
21
|
a1i |
|
| 70 |
|
simprl |
|
| 71 |
70
|
ad2antrr |
|
| 72 |
|
rpxr |
|
| 73 |
71 72
|
syl |
|
| 74 |
17
|
ad3antrrr |
|
| 75 |
28
|
ad2antrr |
|
| 76 |
75
|
r19.21bi |
|
| 77 |
|
elbl3 |
|
| 78 |
69 73 74 76 77
|
syl22anc |
|
| 79 |
|
eqid |
|
| 80 |
79
|
cnmetdval |
|
| 81 |
76 74 80
|
syl2anc |
|
| 82 |
81
|
breq1d |
|
| 83 |
78 82
|
bitrd |
|
| 84 |
83
|
biimprd |
|
| 85 |
68 84
|
imim12d |
|
| 86 |
85
|
ralimdva |
|
| 87 |
86
|
impr |
|
| 88 |
17
|
ad2antrr |
|
| 89 |
|
simplrl |
|
| 90 |
|
blcntr |
|
| 91 |
21 88 89 90
|
mp3an2i |
|
| 92 |
91
|
a1d |
|
| 93 |
|
eleq1 |
|
| 94 |
4
|
eleq1d |
|
| 95 |
93 94
|
imbi12d |
|
| 96 |
11 95
|
ralsn |
|
| 97 |
92 96
|
sylibr |
|
| 98 |
|
ralunb |
|
| 99 |
87 97 98
|
sylanbrc |
|
| 100 |
1
|
ad2antrr |
|
| 101 |
99 100
|
raleqtrrdv |
|
| 102 |
|
ss2rab |
|
| 103 |
101 102
|
sylibr |
|
| 104 |
|
incom |
|
| 105 |
|
dfin5 |
|
| 106 |
104 105
|
eqtri |
|
| 107 |
9
|
mptpreima |
|
| 108 |
103 106 107
|
3sstr4g |
|
| 109 |
|
funmpt |
|
| 110 |
|
inss2 |
|
| 111 |
7
|
ad2antrr |
|
| 112 |
111
|
fdmd |
|
| 113 |
110 112
|
sseqtrrid |
|
| 114 |
|
funimass3 |
|
| 115 |
109 113 114
|
sylancr |
|
| 116 |
108 115
|
mpbird |
|
| 117 |
|
simplrr |
|
| 118 |
116 117
|
sstrd |
|
| 119 |
|
eleq2 |
|
| 120 |
|
imaeq2 |
|
| 121 |
120
|
sseq1d |
|
| 122 |
119 121
|
anbi12d |
|
| 123 |
122
|
rspcev |
|
| 124 |
49 57 118 123
|
syl12anc |
|
| 125 |
124
|
rexlimdvaa |
|
| 126 |
125
|
adantlr |
|
| 127 |
32 126
|
mpd |
|
| 128 |
127
|
rexlimdvaa |
|
| 129 |
24 128
|
syl5 |
|
| 130 |
129
|
expdimp |
|
| 131 |
20 130
|
sylbid |
|
| 132 |
131
|
ralrimiva |
|
| 133 |
|
letopon |
|
| 134 |
|
resttopon |
|
| 135 |
133 40 134
|
sylancr |
|
| 136 |
6 135
|
eqeltrid |
|
| 137 |
5
|
cnfldtopon |
|
| 138 |
137
|
a1i |
|
| 139 |
|
iscnp |
|
| 140 |
136 138 14 139
|
syl3anc |
|
| 141 |
140
|
adantr |
|
| 142 |
8 132 141
|
mpbir2and |
|
| 143 |
|
simplr |
|
| 144 |
17
|
ad2antrr |
|
| 145 |
72
|
adantl |
|
| 146 |
22
|
blopn |
|
| 147 |
21 144 145 146
|
mp3an2i |
|
| 148 |
18
|
ad2antrr |
|
| 149 |
|
simpr |
|
| 150 |
21 144 149 90
|
mp3an2i |
|
| 151 |
148 150
|
eqeltrd |
|
| 152 |
|
cnpimaex |
|
| 153 |
143 147 151 152
|
syl3anc |
|
| 154 |
|
vex |
|
| 155 |
154
|
inex1 |
|
| 156 |
155
|
a1i |
|
| 157 |
6
|
eleq2i |
|
| 158 |
43
|
ad2antrr |
|
| 159 |
|
elrest |
|
| 160 |
33 158 159
|
sylancr |
|
| 161 |
157 160
|
bitrid |
|
| 162 |
|
eleq2 |
|
| 163 |
|
imaeq2 |
|
| 164 |
163
|
sseq1d |
|
| 165 |
162 164
|
anbi12d |
|
| 166 |
165
|
adantl |
|
| 167 |
156 161 166
|
rexxfr2d |
|
| 168 |
153 167
|
mpbid |
|
| 169 |
|
elinel1 |
|
| 170 |
|
pnfnei |
|
| 171 |
169 170
|
sylan2 |
|
| 172 |
|
df-ima |
|
| 173 |
|
inss2 |
|
| 174 |
|
resmpt |
|
| 175 |
173 174
|
ax-mp |
|
| 176 |
175
|
rneqi |
|
| 177 |
172 176
|
eqtri |
|
| 178 |
177
|
sseq1i |
|
| 179 |
|
dfss3 |
|
| 180 |
178 179
|
bitri |
|
| 181 |
16
|
adantr |
|
| 182 |
|
ssralv |
|
| 183 |
173 181 182
|
mpsyl |
|
| 184 |
|
eqid |
|
| 185 |
|
eleq1 |
|
| 186 |
184 185
|
ralrnmptw |
|
| 187 |
183 186
|
syl |
|
| 188 |
187
|
biimpd |
|
| 189 |
180 188
|
biimtrid |
|
| 190 |
|
simplrr |
|
| 191 |
35
|
ad3antrrr |
|
| 192 |
|
simprl |
|
| 193 |
191 192
|
sseldd |
|
| 194 |
|
simprr |
|
| 195 |
|
pnfge |
|
| 196 |
193 195
|
syl |
|
| 197 |
|
simplrl |
|
| 198 |
197
|
rexrd |
|
| 199 |
198 36 60
|
sylancl |
|
| 200 |
193 194 196 199
|
mpbir3and |
|
| 201 |
190 200
|
sseldd |
|
| 202 |
26
|
ad2antrr |
|
| 203 |
202
|
sselda |
|
| 204 |
203
|
adantrr |
|
| 205 |
201 204
|
elind |
|
| 206 |
205
|
ex |
|
| 207 |
206
|
imim1d |
|
| 208 |
21
|
a1i |
|
| 209 |
72
|
adantl |
|
| 210 |
209
|
ad2antrr |
|
| 211 |
17
|
ad3antrrr |
|
| 212 |
28
|
ad2antrr |
|
| 213 |
212
|
r19.21bi |
|
| 214 |
213
|
adantrr |
|
| 215 |
208 210 211 214 77
|
syl22anc |
|
| 216 |
214 211 80
|
syl2anc |
|
| 217 |
216
|
breq1d |
|
| 218 |
215 217
|
bitrd |
|
| 219 |
218
|
pm5.74da |
|
| 220 |
207 219
|
sylibd |
|
| 221 |
220
|
exp4a |
|
| 222 |
221
|
ralimdv2 |
|
| 223 |
222
|
imp |
|
| 224 |
223
|
an32s |
|
| 225 |
224
|
expr |
|
| 226 |
225
|
reximdva |
|
| 227 |
226
|
ex |
|
| 228 |
189 227
|
syld |
|
| 229 |
228
|
com23 |
|
| 230 |
171 229
|
syl5 |
|
| 231 |
230
|
impl |
|
| 232 |
231
|
expimpd |
|
| 233 |
232
|
rexlimdva |
|
| 234 |
233
|
adantlr |
|
| 235 |
168 234
|
mpd |
|
| 236 |
235
|
ralrimiva |
|
| 237 |
28 2 17
|
rlim2lt |
|
| 238 |
237
|
adantr |
|
| 239 |
236 238
|
mpbird |
|
| 240 |
142 239
|
impbida |
|