Metamath Proof Explorer


Theorem rlimpm

Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion rlimpm ( 𝐹𝑟 𝐴𝐹 ∈ ( ℂ ↑pm ℝ ) )

Proof

Step Hyp Ref Expression
1 df-rlim 𝑟 = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 ) ) }
2 opabssxp { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } ⊆ ( ( ℂ ↑pm ℝ ) × ℂ )
3 1 2 eqsstri 𝑟 ⊆ ( ( ℂ ↑pm ℝ ) × ℂ )
4 dmss ( ⇝𝑟 ⊆ ( ( ℂ ↑pm ℝ ) × ℂ ) → dom ⇝𝑟 ⊆ dom ( ( ℂ ↑pm ℝ ) × ℂ ) )
5 3 4 ax-mp dom ⇝𝑟 ⊆ dom ( ( ℂ ↑pm ℝ ) × ℂ )
6 dmxpss dom ( ( ℂ ↑pm ℝ ) × ℂ ) ⊆ ( ℂ ↑pm ℝ )
7 5 6 sstri dom ⇝𝑟 ⊆ ( ℂ ↑pm ℝ )
8 rlimrel Rel ⇝𝑟
9 8 releldmi ( 𝐹𝑟 𝐴𝐹 ∈ dom ⇝𝑟 )
10 7 9 sseldi ( 𝐹𝑟 𝐴𝐹 ∈ ( ℂ ↑pm ℝ ) )