| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-rlim | 
							⊢  ⇝𝑟   =  { 〈 𝑓 ,  𝑥 〉  ∣  ( ( 𝑓  ∈  ( ℂ  ↑pm  ℝ )  ∧  𝑥  ∈  ℂ )  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  dom  𝑓 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝑓 ‘ 𝑤 )  −  𝑥 ) )  <  𝑦 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							opabssxp | 
							⊢ { 〈 𝑓 ,  𝑥 〉  ∣  ( ( 𝑓  ∈  ( ℂ  ↑pm  ℝ )  ∧  𝑥  ∈  ℂ )  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  dom  𝑓 ( 𝑧  ≤  𝑤  →  ( abs ‘ ( ( 𝑓 ‘ 𝑤 )  −  𝑥 ) )  <  𝑦 ) ) }  ⊆  ( ( ℂ  ↑pm  ℝ )  ×  ℂ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqsstri | 
							⊢  ⇝𝑟   ⊆  ( ( ℂ  ↑pm  ℝ )  ×  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							dmss | 
							⊢ (  ⇝𝑟   ⊆  ( ( ℂ  ↑pm  ℝ )  ×  ℂ )  →  dom   ⇝𝑟   ⊆  dom  ( ( ℂ  ↑pm  ℝ )  ×  ℂ ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							⊢ dom   ⇝𝑟   ⊆  dom  ( ( ℂ  ↑pm  ℝ )  ×  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							dmxpss | 
							⊢ dom  ( ( ℂ  ↑pm  ℝ )  ×  ℂ )  ⊆  ( ℂ  ↑pm  ℝ )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sstri | 
							⊢ dom   ⇝𝑟   ⊆  ( ℂ  ↑pm  ℝ )  | 
						
						
							| 8 | 
							
								
							 | 
							rlimrel | 
							⊢ Rel   ⇝𝑟   | 
						
						
							| 9 | 
							
								8
							 | 
							releldmi | 
							⊢ ( 𝐹  ⇝𝑟  𝐴  →  𝐹  ∈  dom   ⇝𝑟  )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							sselid | 
							⊢ ( 𝐹  ⇝𝑟  𝐴  →  𝐹  ∈  ( ℂ  ↑pm  ℝ ) )  |