Metamath Proof Explorer


Theorem rlimpm

Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion rlimpm FAF𝑝𝑚

Proof

Step Hyp Ref Expression
1 df-rlim =fx|f𝑝𝑚xy+zwdomfzwfwx<y
2 opabssxp fx|f𝑝𝑚xy+zwdomfzwfwx<y𝑝𝑚×
3 1 2 eqsstri 𝑝𝑚×
4 dmss 𝑝𝑚×domdom𝑝𝑚×
5 3 4 ax-mp domdom𝑝𝑚×
6 dmxpss dom𝑝𝑚×𝑝𝑚
7 5 6 sstri dom𝑝𝑚
8 rlimrel Rel
9 8 releldmi FAFdom
10 7 9 sselid FAF𝑝𝑚