| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmo2.1 |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 3 |
|
sban |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 4 |
|
clelsb1 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
| 5 |
3 4
|
bianbi |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 6 |
5
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 7 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 8 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 9 |
8
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 10 |
6 7 9
|
3bitri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 11 |
10
|
imbi1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → 𝑥 = 𝑦 ) ) |
| 12 |
|
impexp |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 13 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 14 |
11 12 13
|
3bitri |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 15 |
14
|
albii |
⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 16 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 17 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 18 |
15 16 17
|
3bitr2i |
⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 19 |
18
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 21 |
20 1
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 22 |
21
|
mo3 |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ) |
| 23 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 24 |
19 22 23
|
3bitr4i |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 25 |
2 24
|
bitri |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |