| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idd |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 2 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜑 |
| 3 |
|
sbceq1a |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 |
2 3
|
rexsngf |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 5 |
2 3
|
reusngf |
⊢ ( 𝐴 ∈ V → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 6 |
1 4 5
|
3imtr4d |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 → ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) ) |
| 7 |
|
rmo5 |
⊢ ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 → ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( 𝐴 ∈ V → ∃* 𝑥 ∈ { 𝐴 } 𝜑 ) |
| 9 |
|
rmo0 |
⊢ ∃* 𝑥 ∈ ∅ 𝜑 |
| 10 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
| 11 |
|
rmoeq1 |
⊢ ( { 𝐴 } = ∅ → ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃* 𝑥 ∈ ∅ 𝜑 ) ) |
| 12 |
10 11
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃* 𝑥 ∈ ∅ 𝜑 ) ) |
| 13 |
9 12
|
mpbiri |
⊢ ( ¬ 𝐴 ∈ V → ∃* 𝑥 ∈ { 𝐴 } 𝜑 ) |
| 14 |
8 13
|
pm2.61i |
⊢ ∃* 𝑥 ∈ { 𝐴 } 𝜑 |