Metamath Proof Explorer


Theorem rngohommul

Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghommul.1 𝐺 = ( 1st𝑅 )
rnghommul.2 𝑋 = ran 𝐺
rnghommul.3 𝐻 = ( 2nd𝑅 )
rnghommul.4 𝐾 = ( 2nd𝑆 )
Assertion rngohommul ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rnghommul.1 𝐺 = ( 1st𝑅 )
2 rnghommul.2 𝑋 = ran 𝐺
3 rnghommul.3 𝐻 = ( 2nd𝑅 )
4 rnghommul.4 𝐾 = ( 2nd𝑆 )
5 eqid ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 )
6 eqid ( 1st𝑆 ) = ( 1st𝑆 )
7 eqid ran ( 1st𝑆 ) = ran ( 1st𝑆 )
8 eqid ( GId ‘ 𝐾 ) = ( GId ‘ 𝐾 )
9 1 3 2 5 6 4 7 8 isrngohom ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( 𝐹 : 𝑋 ⟶ ran ( 1st𝑆 ) ∧ ( 𝐹 ‘ ( GId ‘ 𝐻 ) ) = ( GId ‘ 𝐾 ) ∧ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 1st𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) ) ) ) )
10 9 biimpa ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → ( 𝐹 : 𝑋 ⟶ ran ( 1st𝑆 ) ∧ ( 𝐹 ‘ ( GId ‘ 𝐻 ) ) = ( GId ‘ 𝐾 ) ∧ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 1st𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) ) ) )
11 10 simp3d ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 1st𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) ) )
12 11 3impa ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 1st𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) ) )
13 simpr ( ( ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 1st𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) )
14 13 2ralimi ( ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 1st𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) ) → ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) )
15 12 14 syl ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) → ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) )
16 fvoveq1 ( 𝑥 = 𝐴 → ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 𝐻 𝑦 ) ) )
17 fveq2 ( 𝑥 = 𝐴 → ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
18 17 oveq1d ( 𝑥 = 𝐴 → ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝑦 ) ) )
19 16 18 eqeq12d ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 𝐻 𝑦 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝑦 ) ) ) )
20 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 𝐻 𝑦 ) = ( 𝐴 𝐻 𝐵 ) )
21 20 fveq2d ( 𝑦 = 𝐵 → ( 𝐹 ‘ ( 𝐴 𝐻 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) )
22 fveq2 ( 𝑦 = 𝐵 → ( 𝐹𝑦 ) = ( 𝐹𝐵 ) )
23 22 oveq2d ( 𝑦 = 𝐵 → ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝑦 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝐵 ) ) )
24 21 23 eqeq12d ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ ( 𝐴 𝐻 𝑦 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝐵 ) ) ) )
25 19 24 rspc2v ( ( 𝐴𝑋𝐵𝑋 ) → ( ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 𝐻 𝑦 ) ) = ( ( 𝐹𝑥 ) 𝐾 ( 𝐹𝑦 ) ) → ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝐵 ) ) ) )
26 15 25 mpan9 ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐹𝐴 ) 𝐾 ( 𝐹𝐵 ) ) )