Metamath Proof Explorer


Theorem rngohommul

Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghommul.1 G=1stR
rnghommul.2 X=ranG
rnghommul.3 H=2ndR
rnghommul.4 K=2ndS
Assertion rngohommul Could not format assertion : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnghommul.1 G=1stR
2 rnghommul.2 X=ranG
3 rnghommul.3 H=2ndR
4 rnghommul.4 K=2ndS
5 eqid GIdH=GIdH
6 eqid 1stS=1stS
7 eqid ran1stS=ran1stS
8 eqid GIdK=GIdK
9 1 3 2 5 6 4 7 8 isrngohom Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) with typecode |-
10 9 biimpa Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) with typecode |-
11 10 simp3d Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) with typecode |-
12 11 3impa Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) with typecode |-
13 simpr FxGy=Fx1stSFyFxHy=FxKFyFxHy=FxKFy
14 13 2ralimi xXyXFxGy=Fx1stSFyFxHy=FxKFyxXyXFxHy=FxKFy
15 12 14 syl Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) with typecode |-
16 fvoveq1 x=AFxHy=FAHy
17 fveq2 x=AFx=FA
18 17 oveq1d x=AFxKFy=FAKFy
19 16 18 eqeq12d x=AFxHy=FxKFyFAHy=FAKFy
20 oveq2 y=BAHy=AHB
21 20 fveq2d y=BFAHy=FAHB
22 fveq2 y=BFy=FB
23 22 oveq2d y=BFAKFy=FAKFB
24 21 23 eqeq12d y=BFAHy=FAKFyFAHB=FAKFB
25 19 24 rspc2v AXBXxXyXFxHy=FxKFyFAHB=FAKFB
26 15 25 mpan9 Could not format ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) with typecode |-