Metamath Proof Explorer


Theorem isrngohom

Description: The predicate "is a ring homomorphism from R to S ". (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses rnghomval.1 G=1stR
rnghomval.2 H=2ndR
rnghomval.3 X=ranG
rnghomval.4 U=GIdH
rnghomval.5 J=1stS
rnghomval.6 K=2ndS
rnghomval.7 Y=ranJ
rnghomval.8 V=GIdK
Assertion isrngohom RRingOpsSRingOpsFRRngHomSF:XYFU=VxXyXFxGy=FxJFyFxHy=FxKFy

Proof

Step Hyp Ref Expression
1 rnghomval.1 G=1stR
2 rnghomval.2 H=2ndR
3 rnghomval.3 X=ranG
4 rnghomval.4 U=GIdH
5 rnghomval.5 J=1stS
6 rnghomval.6 K=2ndS
7 rnghomval.7 Y=ranJ
8 rnghomval.8 V=GIdK
9 1 2 3 4 5 6 7 8 rngohomval RRingOpsSRingOpsRRngHomS=fYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfy
10 9 eleq2d RRingOpsSRingOpsFRRngHomSFfYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfy
11 5 fvexi JV
12 11 rnex ranJV
13 7 12 eqeltri YV
14 1 fvexi GV
15 14 rnex ranGV
16 3 15 eqeltri XV
17 13 16 elmap FYXF:XY
18 17 anbi1i FYXFU=VxXyXFxGy=FxJFyFxHy=FxKFyF:XYFU=VxXyXFxGy=FxJFyFxHy=FxKFy
19 fveq1 f=FfU=FU
20 19 eqeq1d f=FfU=VFU=V
21 fveq1 f=FfxGy=FxGy
22 fveq1 f=Ffx=Fx
23 fveq1 f=Ffy=Fy
24 22 23 oveq12d f=FfxJfy=FxJFy
25 21 24 eqeq12d f=FfxGy=fxJfyFxGy=FxJFy
26 fveq1 f=FfxHy=FxHy
27 22 23 oveq12d f=FfxKfy=FxKFy
28 26 27 eqeq12d f=FfxHy=fxKfyFxHy=FxKFy
29 25 28 anbi12d f=FfxGy=fxJfyfxHy=fxKfyFxGy=FxJFyFxHy=FxKFy
30 29 2ralbidv f=FxXyXfxGy=fxJfyfxHy=fxKfyxXyXFxGy=FxJFyFxHy=FxKFy
31 20 30 anbi12d f=FfU=VxXyXfxGy=fxJfyfxHy=fxKfyFU=VxXyXFxGy=FxJFyFxHy=FxKFy
32 31 elrab FfYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfyFYXFU=VxXyXFxGy=FxJFyFxHy=FxKFy
33 3anass F:XYFU=VxXyXFxGy=FxJFyFxHy=FxKFyF:XYFU=VxXyXFxGy=FxJFyFxHy=FxKFy
34 18 32 33 3bitr4i FfYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfyF:XYFU=VxXyXFxGy=FxJFyFxHy=FxKFy
35 10 34 bitrdi RRingOpsSRingOpsFRRngHomSF:XYFU=VxXyXFxGy=FxJFyFxHy=FxKFy