Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnggrphom.1 | |
|
rnggrphom.2 | |
||
Assertion | rngogrphom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnggrphom.1 | |
|
2 | rnggrphom.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 1 3 2 4 | rngohomf | |
6 | 1 3 2 | rngohomadd | |
7 | 6 | eqcomd | |
8 | 7 | ralrimivva | |
9 | 1 | rngogrpo | |
10 | 2 | rngogrpo | |
11 | 3 4 | elghomOLD | |
12 | 9 10 11 | syl2an | |
13 | 12 | 3adant3 | |
14 | 5 8 13 | mpbir2and | |