| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnmptbddlem.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
rnmptbddlem.b |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 4 |
3
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 5 |
4
|
elv |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ ℝ |
| 7 |
1 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ℝ ) |
| 8 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
| 9 |
7 8
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≤ 𝑦 |
| 11 |
|
simp3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) |
| 12 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑦 ) |
| 13 |
12
|
3adant3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝐵 ≤ 𝑦 ) |
| 14 |
11 13
|
eqbrtrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 ≤ 𝑦 ) |
| 15 |
14
|
3exp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝑦 ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝑦 ) ) ) |
| 17 |
9 10 16
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝑦 ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → 𝑧 ≤ 𝑦 ) |
| 19 |
5 18
|
sylan2b |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑧 ≤ 𝑦 ) |
| 20 |
19
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 21 |
20 2
|
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |