Step |
Hyp |
Ref |
Expression |
1 |
|
qbtwnre |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) → ∃ 𝑑 ∈ ℚ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) |
2 |
|
simp2 |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → 𝑑 ∈ ℚ ) |
3 |
|
simp3r |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → 𝑑 < 𝑏 ) |
4 |
|
breq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 < 𝑏 ↔ 𝑑 < 𝑏 ) ) |
5 |
4
|
elrab |
⊢ ( 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ↔ ( 𝑑 ∈ ℚ ∧ 𝑑 < 𝑏 ) ) |
6 |
2 3 5
|
sylanbrc |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |
7 |
|
simp11 |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → 𝑎 ∈ ℝ ) |
8 |
|
qre |
⊢ ( 𝑑 ∈ ℚ → 𝑑 ∈ ℝ ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → 𝑑 ∈ ℝ ) |
10 |
|
simp3l |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → 𝑎 < 𝑑 ) |
11 |
7 9 10
|
ltnsymd |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → ¬ 𝑑 < 𝑎 ) |
12 |
11
|
intnand |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → ¬ ( 𝑑 ∈ ℚ ∧ 𝑑 < 𝑎 ) ) |
13 |
|
breq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 < 𝑎 ↔ 𝑑 < 𝑎 ) ) |
14 |
13
|
elrab |
⊢ ( 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ↔ ( 𝑑 ∈ ℚ ∧ 𝑑 < 𝑎 ) ) |
15 |
12 14
|
sylnibr |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → ¬ 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ) |
16 |
|
nelne1 |
⊢ ( ( 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ∧ ¬ 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ) |
17 |
6 15 16
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ) |
18 |
17
|
necomd |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |
19 |
18
|
rexlimdv3a |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) → ( ∃ 𝑑 ∈ ℚ ( 𝑎 < 𝑑 ∧ 𝑑 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) ) |
20 |
1 19
|
mpd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |
21 |
20
|
3expa |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑎 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |