Metamath Proof Explorer


Theorem rpnnen3lem

Description: Lemma for rpnnen3 . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Assertion rpnnen3lem ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑎 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )

Proof

Step Hyp Ref Expression
1 qbtwnre ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) → ∃ 𝑑 ∈ ℚ ( 𝑎 < 𝑑𝑑 < 𝑏 ) )
2 simp2 ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → 𝑑 ∈ ℚ )
3 simp3r ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → 𝑑 < 𝑏 )
4 breq1 ( 𝑐 = 𝑑 → ( 𝑐 < 𝑏𝑑 < 𝑏 ) )
5 4 elrab ( 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ↔ ( 𝑑 ∈ ℚ ∧ 𝑑 < 𝑏 ) )
6 2 3 5 sylanbrc ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )
7 simp11 ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → 𝑎 ∈ ℝ )
8 qre ( 𝑑 ∈ ℚ → 𝑑 ∈ ℝ )
9 8 3ad2ant2 ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → 𝑑 ∈ ℝ )
10 simp3l ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → 𝑎 < 𝑑 )
11 7 9 10 ltnsymd ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → ¬ 𝑑 < 𝑎 )
12 11 intnand ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → ¬ ( 𝑑 ∈ ℚ ∧ 𝑑 < 𝑎 ) )
13 breq1 ( 𝑐 = 𝑑 → ( 𝑐 < 𝑎𝑑 < 𝑎 ) )
14 13 elrab ( 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ↔ ( 𝑑 ∈ ℚ ∧ 𝑑 < 𝑎 ) )
15 12 14 sylnibr ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → ¬ 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } )
16 nelne1 ( ( 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ∧ ¬ 𝑑 ∈ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } )
17 6 15 16 syl2anc ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } )
18 17 necomd ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) ∧ 𝑑 ∈ ℚ ∧ ( 𝑎 < 𝑑𝑑 < 𝑏 ) ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )
19 18 rexlimdv3a ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) → ( ∃ 𝑑 ∈ ℚ ( 𝑎 < 𝑑𝑑 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) )
20 1 19 mpd ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )
21 20 3expa ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑎 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )