Step |
Hyp |
Ref |
Expression |
1 |
|
qex |
⊢ ℚ ∈ V |
2 |
1
|
pwex |
⊢ 𝒫 ℚ ∈ V |
3 |
|
ssrab2 |
⊢ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ⊆ ℚ |
4 |
1
|
elpw2 |
⊢ ( { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ∈ 𝒫 ℚ ↔ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ⊆ ℚ ) |
5 |
3 4
|
mpbir |
⊢ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ∈ 𝒫 ℚ |
6 |
5
|
a1i |
⊢ ( 𝑎 ∈ ℝ → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ∈ 𝒫 ℚ ) |
7 |
|
lttri2 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 ≠ 𝑏 ↔ ( 𝑎 < 𝑏 ∨ 𝑏 < 𝑎 ) ) ) |
8 |
|
rpnnen3lem |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑎 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |
9 |
|
rpnnen3lem |
⊢ ( ( ( 𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ) |
10 |
9
|
ancom1s |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ) |
11 |
10
|
necomd |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |
12 |
8 11
|
jaodan |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑎 < 𝑏 ∨ 𝑏 < 𝑎 ) ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |
13 |
12
|
ex |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( 𝑎 < 𝑏 ∨ 𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) ) |
14 |
7 13
|
sylbid |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 ≠ 𝑏 → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) ) |
15 |
14
|
necon4d |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } = { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } → 𝑎 = 𝑏 ) ) |
16 |
|
breq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑐 < 𝑎 ↔ 𝑐 < 𝑏 ) ) |
17 |
16
|
rabbidv |
⊢ ( 𝑎 = 𝑏 → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } = { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) |
18 |
15 17
|
impbid1 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } = { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ↔ 𝑎 = 𝑏 ) ) |
19 |
6 18
|
dom2 |
⊢ ( 𝒫 ℚ ∈ V → ℝ ≼ 𝒫 ℚ ) |
20 |
2 19
|
ax-mp |
⊢ ℝ ≼ 𝒫 ℚ |