Metamath Proof Explorer


Theorem rpnnen3

Description: Dedekind cut injection of RR into ~P QQ . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Assertion rpnnen3 ℝ ≼ 𝒫 ℚ

Proof

Step Hyp Ref Expression
1 qex ℚ ∈ V
2 1 pwex 𝒫 ℚ ∈ V
3 ssrab2 { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ⊆ ℚ
4 1 elpw2 ( { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ∈ 𝒫 ℚ ↔ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ⊆ ℚ )
5 3 4 mpbir { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ∈ 𝒫 ℚ
6 5 a1i ( 𝑎 ∈ ℝ → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ∈ 𝒫 ℚ )
7 lttri2 ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎𝑏 ↔ ( 𝑎 < 𝑏𝑏 < 𝑎 ) ) )
8 rpnnen3lem ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑎 < 𝑏 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )
9 rpnnen3lem ( ( ( 𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } )
10 9 ancom1s ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } )
11 10 necomd ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ 𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )
12 8 11 jaodan ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑎 < 𝑏𝑏 < 𝑎 ) ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )
13 12 ex ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( 𝑎 < 𝑏𝑏 < 𝑎 ) → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) )
14 7 13 sylbid ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎𝑏 → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } ≠ { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ) )
15 14 necon4d ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } = { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } → 𝑎 = 𝑏 ) )
16 breq2 ( 𝑎 = 𝑏 → ( 𝑐 < 𝑎𝑐 < 𝑏 ) )
17 16 rabbidv ( 𝑎 = 𝑏 → { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } = { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } )
18 15 17 impbid1 ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑎 } = { 𝑐 ∈ ℚ ∣ 𝑐 < 𝑏 } ↔ 𝑎 = 𝑏 ) )
19 6 18 dom2 ( 𝒫 ℚ ∈ V → ℝ ≼ 𝒫 ℚ )
20 2 19 ax-mp ℝ ≼ 𝒫 ℚ