Metamath Proof Explorer


Theorem rpnnen3

Description: Dedekind cut injection of RR into ~P QQ . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Assertion rpnnen3
|- RR ~<_ ~P QQ

Proof

Step Hyp Ref Expression
1 qex
 |-  QQ e. _V
2 1 pwex
 |-  ~P QQ e. _V
3 ssrab2
 |-  { c e. QQ | c < a } C_ QQ
4 1 elpw2
 |-  ( { c e. QQ | c < a } e. ~P QQ <-> { c e. QQ | c < a } C_ QQ )
5 3 4 mpbir
 |-  { c e. QQ | c < a } e. ~P QQ
6 5 a1i
 |-  ( a e. RR -> { c e. QQ | c < a } e. ~P QQ )
7 lttri2
 |-  ( ( a e. RR /\ b e. RR ) -> ( a =/= b <-> ( a < b \/ b < a ) ) )
8 rpnnen3lem
 |-  ( ( ( a e. RR /\ b e. RR ) /\ a < b ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } )
9 rpnnen3lem
 |-  ( ( ( b e. RR /\ a e. RR ) /\ b < a ) -> { c e. QQ | c < b } =/= { c e. QQ | c < a } )
10 9 ancom1s
 |-  ( ( ( a e. RR /\ b e. RR ) /\ b < a ) -> { c e. QQ | c < b } =/= { c e. QQ | c < a } )
11 10 necomd
 |-  ( ( ( a e. RR /\ b e. RR ) /\ b < a ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } )
12 8 11 jaodan
 |-  ( ( ( a e. RR /\ b e. RR ) /\ ( a < b \/ b < a ) ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } )
13 12 ex
 |-  ( ( a e. RR /\ b e. RR ) -> ( ( a < b \/ b < a ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } ) )
14 7 13 sylbid
 |-  ( ( a e. RR /\ b e. RR ) -> ( a =/= b -> { c e. QQ | c < a } =/= { c e. QQ | c < b } ) )
15 14 necon4d
 |-  ( ( a e. RR /\ b e. RR ) -> ( { c e. QQ | c < a } = { c e. QQ | c < b } -> a = b ) )
16 breq2
 |-  ( a = b -> ( c < a <-> c < b ) )
17 16 rabbidv
 |-  ( a = b -> { c e. QQ | c < a } = { c e. QQ | c < b } )
18 15 17 impbid1
 |-  ( ( a e. RR /\ b e. RR ) -> ( { c e. QQ | c < a } = { c e. QQ | c < b } <-> a = b ) )
19 6 18 dom2
 |-  ( ~P QQ e. _V -> RR ~<_ ~P QQ )
20 2 19 ax-mp
 |-  RR ~<_ ~P QQ