Metamath Proof Explorer


Theorem rpnnen3lem

Description: Lemma for rpnnen3 . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Assertion rpnnen3lem
|- ( ( ( a e. RR /\ b e. RR ) /\ a < b ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } )

Proof

Step Hyp Ref Expression
1 qbtwnre
 |-  ( ( a e. RR /\ b e. RR /\ a < b ) -> E. d e. QQ ( a < d /\ d < b ) )
2 simp2
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> d e. QQ )
3 simp3r
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> d < b )
4 breq1
 |-  ( c = d -> ( c < b <-> d < b ) )
5 4 elrab
 |-  ( d e. { c e. QQ | c < b } <-> ( d e. QQ /\ d < b ) )
6 2 3 5 sylanbrc
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> d e. { c e. QQ | c < b } )
7 simp11
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> a e. RR )
8 qre
 |-  ( d e. QQ -> d e. RR )
9 8 3ad2ant2
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> d e. RR )
10 simp3l
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> a < d )
11 7 9 10 ltnsymd
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> -. d < a )
12 11 intnand
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> -. ( d e. QQ /\ d < a ) )
13 breq1
 |-  ( c = d -> ( c < a <-> d < a ) )
14 13 elrab
 |-  ( d e. { c e. QQ | c < a } <-> ( d e. QQ /\ d < a ) )
15 12 14 sylnibr
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> -. d e. { c e. QQ | c < a } )
16 nelne1
 |-  ( ( d e. { c e. QQ | c < b } /\ -. d e. { c e. QQ | c < a } ) -> { c e. QQ | c < b } =/= { c e. QQ | c < a } )
17 6 15 16 syl2anc
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> { c e. QQ | c < b } =/= { c e. QQ | c < a } )
18 17 necomd
 |-  ( ( ( a e. RR /\ b e. RR /\ a < b ) /\ d e. QQ /\ ( a < d /\ d < b ) ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } )
19 18 rexlimdv3a
 |-  ( ( a e. RR /\ b e. RR /\ a < b ) -> ( E. d e. QQ ( a < d /\ d < b ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } ) )
20 1 19 mpd
 |-  ( ( a e. RR /\ b e. RR /\ a < b ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } )
21 20 3expa
 |-  ( ( ( a e. RR /\ b e. RR ) /\ a < b ) -> { c e. QQ | c < a } =/= { c e. QQ | c < b } )