Metamath Proof Explorer


Theorem rpnnen3

Description: Dedekind cut injection of RR into ~P QQ . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Assertion rpnnen3 𝒫

Proof

Step Hyp Ref Expression
1 qex V
2 1 pwex 𝒫V
3 ssrab2 c|c<a
4 1 elpw2 c|c<a𝒫c|c<a
5 3 4 mpbir c|c<a𝒫
6 5 a1i ac|c<a𝒫
7 lttri2 ababa<bb<a
8 rpnnen3lem aba<bc|c<ac|c<b
9 rpnnen3lem bab<ac|c<bc|c<a
10 9 ancom1s abb<ac|c<bc|c<a
11 10 necomd abb<ac|c<ac|c<b
12 8 11 jaodan aba<bb<ac|c<ac|c<b
13 12 ex aba<bb<ac|c<ac|c<b
14 7 13 sylbid ababc|c<ac|c<b
15 14 necon4d abc|c<a=c|c<ba=b
16 breq2 a=bc<ac<b
17 16 rabbidv a=bc|c<a=c|c<b
18 15 17 impbid1 abc|c<a=c|c<ba=b
19 6 18 dom2 𝒫V𝒫
20 2 19 ax-mp 𝒫