Metamath Proof Explorer


Theorem rpnnen3

Description: Dedekind cut injection of RR into ~P QQ . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Assertion rpnnen3 𝒫

Proof

Step Hyp Ref Expression
1 qex V
2 1 pwex 𝒫 V
3 ssrab2 c | c < a
4 1 elpw2 c | c < a 𝒫 c | c < a
5 3 4 mpbir c | c < a 𝒫
6 5 a1i a c | c < a 𝒫
7 lttri2 a b a b a < b b < a
8 rpnnen3lem a b a < b c | c < a c | c < b
9 rpnnen3lem b a b < a c | c < b c | c < a
10 9 ancom1s a b b < a c | c < b c | c < a
11 10 necomd a b b < a c | c < a c | c < b
12 8 11 jaodan a b a < b b < a c | c < a c | c < b
13 12 ex a b a < b b < a c | c < a c | c < b
14 7 13 sylbid a b a b c | c < a c | c < b
15 14 necon4d a b c | c < a = c | c < b a = b
16 breq2 a = b c < a c < b
17 16 rabbidv a = b c | c < a = c | c < b
18 15 17 impbid1 a b c | c < a = c | c < b a = b
19 6 18 dom2 𝒫 V 𝒫
20 2 19 ax-mp 𝒫