Metamath Proof Explorer


Theorem s4dom

Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017)

Ref Expression
Assertion s4dom ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → ( 𝐸 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ → dom 𝐸 = ( { 0 , 1 } ∪ { 2 , 3 } ) ) )

Proof

Step Hyp Ref Expression
1 dmeq ( 𝐸 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ → dom 𝐸 = dom ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ )
2 s4prop ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ = ( { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∪ { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } ) )
3 2 dmeqd ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → dom ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ = dom ( { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∪ { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } ) )
4 dmun dom ( { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∪ { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } ) = ( dom { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∪ dom { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } )
5 dmpropg ( ( 𝐴𝑆𝐵𝑆 ) → dom { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } = { 0 , 1 } )
6 5 adantr ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → dom { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } = { 0 , 1 } )
7 dmpropg ( ( 𝐶𝑆𝐷𝑆 ) → dom { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } = { 2 , 3 } )
8 7 adantl ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → dom { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } = { 2 , 3 } )
9 6 8 uneq12d ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → ( dom { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∪ dom { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } ) = ( { 0 , 1 } ∪ { 2 , 3 } ) )
10 4 9 syl5eq ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → dom ( { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∪ { ⟨ 2 , 𝐶 ⟩ , ⟨ 3 , 𝐷 ⟩ } ) = ( { 0 , 1 } ∪ { 2 , 3 } ) )
11 3 10 eqtrd ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → dom ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ = ( { 0 , 1 } ∪ { 2 , 3 } ) )
12 1 11 sylan9eqr ( ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) ∧ 𝐸 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) → dom 𝐸 = ( { 0 , 1 } ∪ { 2 , 3 } ) )
13 12 ex ( ( ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐶𝑆𝐷𝑆 ) ) → ( 𝐸 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ → dom 𝐸 = ( { 0 , 1 } ∪ { 2 , 3 } ) ) )