| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfv0.s | ⊢ 𝑆  =  ( 𝑀  Sat  𝐸 ) | 
						
							| 2 |  | r19.41v | ⊢ ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ↔  ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 3 |  | r19.41v | ⊢ ( ∃ 𝑖  ∈  ω ( ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ↔  ( ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 4 | 2 3 | orbi12i | ⊢ ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ∨  ∃ 𝑖  ∈  ω ( ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) )  ↔  ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ∨  ( ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) ) | 
						
							| 5 |  | ovex | ⊢ ( 𝑀  ↑m  ω )  ∈  V | 
						
							| 6 |  | difelpw | ⊢ ( ( 𝑀  ↑m  ω )  ∈  V  →  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  ∈  𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  ∈  𝒫  ( 𝑀  ↑m  ω ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  →  ( 𝑦  ∈  𝒫  ( 𝑀  ↑m  ω )  ↔  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 9 | 7 8 | mpbiri | ⊢ ( 𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  →  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 10 | 9 | pm4.71i | ⊢ ( 𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  ↔  ( 𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 11 | 10 | bianass | ⊢ ( ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ↔  ( ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 12 | 11 | rexbii | ⊢ ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ↔  ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 13 |  | rabelpw | ⊢ ( ( 𝑀  ↑m  ω )  ∈  V  →  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) }  ∈  𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 14 | 5 13 | ax-mp | ⊢ { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) }  ∈  𝒫  ( 𝑀  ↑m  ω ) | 
						
							| 15 |  | eleq1 | ⊢ ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) }  →  ( 𝑦  ∈  𝒫  ( 𝑀  ↑m  ω )  ↔  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) }  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 16 | 14 15 | mpbiri | ⊢ ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) }  →  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) | 
						
							| 17 | 16 | pm4.71i | ⊢ ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) }  ↔  ( 𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) }  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 18 | 17 | bianass | ⊢ ( ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ↔  ( ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 19 | 18 | rexbii | ⊢ ( ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ↔  ∃ 𝑖  ∈  ω ( ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 20 | 12 19 | orbi12i | ⊢ ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ↔  ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ∨  ∃ 𝑖  ∈  ω ( ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) ) | 
						
							| 21 |  | andir | ⊢ ( ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ↔  ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ∨  ( ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) ) | 
						
							| 22 | 4 20 21 | 3bitr4i | ⊢ ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ↔  ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 23 | 22 | rexbii | ⊢ ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ↔  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 24 |  | r19.41v | ⊢ ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) )  ↔  ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 25 | 23 24 | bitri | ⊢ ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ↔  ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 26 | 25 | opabbii | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) } | 
						
							| 27 | 1 | satfvsuclem1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) )  ∧  𝑦  ∈  𝒫  ( 𝑀  ↑m  ω ) ) }  ∈  V ) | 
						
							| 28 | 26 27 | eqeltrid | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ 𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) }  ∈  V ) |