| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbc3or |
⊢ ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) |
| 2 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ) |
| 3 |
|
sbcel1v |
⊢ ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) |
| 5 |
|
eqsbc2 |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
| 6 |
|
3orbi123 |
⊢ ( ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) → ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |
| 7 |
6
|
3impexpbicomi |
⊢ ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) → ( ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) ) ) |
| 8 |
2 4 5 7
|
syl3c |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
| 9 |
1 8
|
bitr4id |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |