| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑥 Tr 𝐴 |
| 2 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 ∈ 𝐴 |
| 4 |
1 2 3
|
nf3an |
⊢ Ⅎ 𝑥 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 Tr 𝐴 |
| 6 |
|
nfra2w |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑦 𝐵 ∈ 𝐴 |
| 8 |
5 6 7
|
nf3an |
⊢ Ⅎ 𝑦 ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) |
| 9 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝑦 ) |
| 10 |
9
|
a1i |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝑦 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 12 |
11
|
a1i |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) ) |
| 13 |
|
pm3.2an3 |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝐵 → ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) ) ) |
| 14 |
10 12 13
|
syl6c |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) ) ) |
| 15 |
|
en3lp |
⊢ ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) |
| 16 |
|
con3 |
⊢ ( ( 𝐵 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) ) → ( ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥 ) → ¬ 𝐵 ∈ 𝑥 ) ) |
| 17 |
14 15 16
|
syl6mpi |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝐵 ∈ 𝑥 ) ) |
| 18 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵 ) ) |
| 19 |
18
|
biimprcd |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐵 → 𝑦 ∈ 𝑥 ) ) |
| 20 |
12 19
|
syl6 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐵 → 𝑦 ∈ 𝑥 ) ) ) |
| 21 |
|
pm3.2 |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 22 |
10 20 21
|
syl10 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) ) |
| 23 |
|
en2lp |
⊢ ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) |
| 24 |
|
con3 |
⊢ ( ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → ( ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ¬ 𝑥 = 𝐵 ) ) |
| 25 |
22 23 24
|
syl6mpi |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝑥 = 𝐵 ) ) |
| 26 |
|
simp3 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) |
| 27 |
|
simp1 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐴 ) |
| 28 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 29 |
28
|
expd |
⊢ ( Tr 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝐵 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 30 |
27 12 26 29
|
ee121 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) ) |
| 31 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
| 32 |
31
|
expd |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
| 33 |
27 10 30 32
|
ee122 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) |
| 34 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 35 |
34
|
biimpi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 36 |
35
|
3ad2ant2 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 37 |
|
rspsbc2 |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) ) |
| 38 |
26 33 36 37
|
ee121 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 39 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 40 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑥 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 41 |
39 40
|
ax-mp |
⊢ ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ [ 𝑥 / 𝑥 ] [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 42 |
38 41
|
imbitrrdi |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
| 43 |
|
sbcoreleleq |
⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) |
| 44 |
43
|
biimpd |
⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) |
| 45 |
26 42 44
|
sylsyld |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) ) ) |
| 46 |
|
3ornot23 |
⊢ ( ( ¬ 𝐵 ∈ 𝑥 ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 47 |
46
|
ex |
⊢ ( ¬ 𝐵 ∈ 𝑥 → ( ¬ 𝑥 = 𝐵 → ( ( 𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐵 ) ) ) |
| 48 |
17 25 45 47
|
ee222 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 49 |
8 48
|
alrimi |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 50 |
4 49
|
alrimi |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 51 |
|
dftr2 |
⊢ ( Tr 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 52 |
50 51
|
sylibr |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐵 ) |