Metamath Proof Explorer


Theorem setsidel

Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021)

Ref Expression
Hypotheses setsidel.s ( 𝜑𝑆𝑉 )
setsidel.b ( 𝜑𝐵𝑊 )
setsidel.r 𝑅 = ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ )
Assertion setsidel ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )

Proof

Step Hyp Ref Expression
1 setsidel.s ( 𝜑𝑆𝑉 )
2 setsidel.b ( 𝜑𝐵𝑊 )
3 setsidel.r 𝑅 = ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ )
4 opex 𝐴 , 𝐵 ⟩ ∈ V
5 4 snid 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ }
6 elun2 ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
7 5 6 mp1i ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
8 setsval ( ( 𝑆𝑉𝐵𝑊 ) → ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) = ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
9 1 2 8 syl2anc ( 𝜑 → ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) = ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
10 3 9 eqtrid ( 𝜑𝑅 = ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
11 7 10 eleqtrrd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )