| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setsidel.s |
|- ( ph -> S e. V ) |
| 2 |
|
setsidel.b |
|- ( ph -> B e. W ) |
| 3 |
|
setsidel.r |
|- R = ( S sSet <. A , B >. ) |
| 4 |
|
opex |
|- <. A , B >. e. _V |
| 5 |
4
|
snid |
|- <. A , B >. e. { <. A , B >. } |
| 6 |
|
elun2 |
|- ( <. A , B >. e. { <. A , B >. } -> <. A , B >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) |
| 7 |
5 6
|
mp1i |
|- ( ph -> <. A , B >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) |
| 8 |
|
setsval |
|- ( ( S e. V /\ B e. W ) -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) |
| 10 |
3 9
|
eqtrid |
|- ( ph -> R = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) |
| 11 |
7 10
|
eleqtrrd |
|- ( ph -> <. A , B >. e. R ) |