Metamath Proof Explorer


Theorem setsidel

Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021)

Ref Expression
Hypotheses setsidel.s
|- ( ph -> S e. V )
setsidel.b
|- ( ph -> B e. W )
setsidel.r
|- R = ( S sSet <. A , B >. )
Assertion setsidel
|- ( ph -> <. A , B >. e. R )

Proof

Step Hyp Ref Expression
1 setsidel.s
 |-  ( ph -> S e. V )
2 setsidel.b
 |-  ( ph -> B e. W )
3 setsidel.r
 |-  R = ( S sSet <. A , B >. )
4 opex
 |-  <. A , B >. e. _V
5 4 snid
 |-  <. A , B >. e. { <. A , B >. }
6 elun2
 |-  ( <. A , B >. e. { <. A , B >. } -> <. A , B >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) )
7 5 6 mp1i
 |-  ( ph -> <. A , B >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) )
8 setsval
 |-  ( ( S e. V /\ B e. W ) -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) )
9 1 2 8 syl2anc
 |-  ( ph -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) )
10 3 9 eqtrid
 |-  ( ph -> R = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) )
11 7 10 eleqtrrd
 |-  ( ph -> <. A , B >. e. R )