| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsidel.s |  |-  ( ph -> S e. V ) | 
						
							| 2 |  | setsidel.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | setsidel.r |  |-  R = ( S sSet <. A , B >. ) | 
						
							| 4 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 5 | 4 | snid |  |-  <. A , B >. e. { <. A , B >. } | 
						
							| 6 |  | elun2 |  |-  ( <. A , B >. e. { <. A , B >. } -> <. A , B >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 7 | 5 6 | mp1i |  |-  ( ph -> <. A , B >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 8 |  | setsval |  |-  ( ( S e. V /\ B e. W ) -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 9 | 1 2 8 | syl2anc |  |-  ( ph -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 10 | 3 9 | eqtrid |  |-  ( ph -> R = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 11 | 7 10 | eleqtrrd |  |-  ( ph -> <. A , B >. e. R ) |