| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsidel.s |  |-  ( ph -> S e. V ) | 
						
							| 2 |  | setsidel.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | setsidel.r |  |-  R = ( S sSet <. A , B >. ) | 
						
							| 4 |  | setsnidel.c |  |-  ( ph -> C e. X ) | 
						
							| 5 |  | setsnidel.d |  |-  ( ph -> D e. Y ) | 
						
							| 6 |  | setsnidel.s |  |-  ( ph -> <. C , D >. e. S ) | 
						
							| 7 |  | setsnidel.n |  |-  ( ph -> A =/= C ) | 
						
							| 8 | 4 | elexd |  |-  ( ph -> C e. _V ) | 
						
							| 9 | 7 | necomd |  |-  ( ph -> C =/= A ) | 
						
							| 10 |  | eldifsn |  |-  ( C e. ( _V \ { A } ) <-> ( C e. _V /\ C =/= A ) ) | 
						
							| 11 | 8 9 10 | sylanbrc |  |-  ( ph -> C e. ( _V \ { A } ) ) | 
						
							| 12 |  | opelres |  |-  ( D e. Y -> ( <. C , D >. e. ( S |` ( _V \ { A } ) ) <-> ( C e. ( _V \ { A } ) /\ <. C , D >. e. S ) ) ) | 
						
							| 13 | 5 12 | syl |  |-  ( ph -> ( <. C , D >. e. ( S |` ( _V \ { A } ) ) <-> ( C e. ( _V \ { A } ) /\ <. C , D >. e. S ) ) ) | 
						
							| 14 | 11 6 13 | mpbir2and |  |-  ( ph -> <. C , D >. e. ( S |` ( _V \ { A } ) ) ) | 
						
							| 15 |  | elun1 |  |-  ( <. C , D >. e. ( S |` ( _V \ { A } ) ) -> <. C , D >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> <. C , D >. e. ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 17 |  | setsval |  |-  ( ( S e. V /\ B e. W ) -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 18 | 1 2 17 | syl2anc |  |-  ( ph -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 19 | 3 18 | eqtrid |  |-  ( ph -> R = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) ) | 
						
							| 20 | 16 19 | eleqtrrd |  |-  ( ph -> <. C , D >. e. R ) |