Metamath Proof Explorer


Theorem setsnidel

Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021)

Ref Expression
Hypotheses setsidel.s φ S V
setsidel.b φ B W
setsidel.r R = S sSet A B
setsnidel.c φ C X
setsnidel.d φ D Y
setsnidel.s φ C D S
setsnidel.n φ A C
Assertion setsnidel φ C D R

Proof

Step Hyp Ref Expression
1 setsidel.s φ S V
2 setsidel.b φ B W
3 setsidel.r R = S sSet A B
4 setsnidel.c φ C X
5 setsnidel.d φ D Y
6 setsnidel.s φ C D S
7 setsnidel.n φ A C
8 4 elexd φ C V
9 7 necomd φ C A
10 eldifsn C V A C V C A
11 8 9 10 sylanbrc φ C V A
12 opelres D Y C D S V A C V A C D S
13 5 12 syl φ C D S V A C V A C D S
14 11 6 13 mpbir2and φ C D S V A
15 elun1 C D S V A C D S V A A B
16 14 15 syl φ C D S V A A B
17 setsval S V B W S sSet A B = S V A A B
18 1 2 17 syl2anc φ S sSet A B = S V A A B
19 3 18 syl5eq φ R = S V A A B
20 16 19 eleqtrrd φ C D R