| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acosval | ⊢ ( 𝐴  ∈  ℂ  →  ( arccos ‘ 𝐴 )  =  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( arccos ‘ 𝐴 ) )  =  ( ( π  /  2 )  −  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) ) ) | 
						
							| 3 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 4 |  | halfcl | ⊢ ( π  ∈  ℂ  →  ( π  /  2 )  ∈  ℂ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 6 |  | asincl | ⊢ ( 𝐴  ∈  ℂ  →  ( arcsin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 |  | nncan | ⊢ ( ( ( π  /  2 )  ∈  ℂ  ∧  ( arcsin ‘ 𝐴 )  ∈  ℂ )  →  ( ( π  /  2 )  −  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  =  ( arcsin ‘ 𝐴 ) ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  =  ( arcsin ‘ 𝐴 ) ) | 
						
							| 9 | 2 8 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( arccos ‘ 𝐴 ) )  =  ( arcsin ‘ 𝐴 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( ( π  /  2 )  −  ( arccos ‘ 𝐴 ) ) )  =  ( cos ‘ ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 11 |  | acoscl | ⊢ ( 𝐴  ∈  ℂ  →  ( arccos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 12 |  | coshalfpim | ⊢ ( ( arccos ‘ 𝐴 )  ∈  ℂ  →  ( cos ‘ ( ( π  /  2 )  −  ( arccos ‘ 𝐴 ) ) )  =  ( sin ‘ ( arccos ‘ 𝐴 ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( ( π  /  2 )  −  ( arccos ‘ 𝐴 ) ) )  =  ( sin ‘ ( arccos ‘ 𝐴 ) ) ) | 
						
							| 14 |  | cosasin | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( arcsin ‘ 𝐴 ) )  =  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 15 | 10 13 14 | 3eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( arccos ‘ 𝐴 ) )  =  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) |