| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acosval |  |-  ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( A e. CC -> ( ( _pi / 2 ) - ( arccos ` A ) ) = ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) | 
						
							| 3 |  | picn |  |-  _pi e. CC | 
						
							| 4 |  | halfcl |  |-  ( _pi e. CC -> ( _pi / 2 ) e. CC ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( _pi / 2 ) e. CC | 
						
							| 6 |  | asincl |  |-  ( A e. CC -> ( arcsin ` A ) e. CC ) | 
						
							| 7 |  | nncan |  |-  ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( arcsin ` A ) ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( A e. CC -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( arcsin ` A ) ) | 
						
							| 9 | 2 8 | eqtrd |  |-  ( A e. CC -> ( ( _pi / 2 ) - ( arccos ` A ) ) = ( arcsin ` A ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( cos ` ( arcsin ` A ) ) ) | 
						
							| 11 |  | acoscl |  |-  ( A e. CC -> ( arccos ` A ) e. CC ) | 
						
							| 12 |  | coshalfpim |  |-  ( ( arccos ` A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( sin ` ( arccos ` A ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( sin ` ( arccos ` A ) ) ) | 
						
							| 14 |  | cosasin |  |-  ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) | 
						
							| 15 | 10 13 14 | 3eqtr3d |  |-  ( A e. CC -> ( sin ` ( arccos ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |