| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asincl |  |-  ( A e. CC -> ( arcsin ` A ) e. CC ) | 
						
							| 2 |  | cosval |  |-  ( ( arcsin ` A ) e. CC -> ( cos ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) ) | 
						
							| 4 |  | ax-1cn |  |-  1 e. CC | 
						
							| 5 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 6 |  | subcl |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 8 | 7 | sqrtcld |  |-  ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) | 
						
							| 9 |  | ax-icn |  |-  _i e. CC | 
						
							| 10 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 11 | 9 10 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 12 | 8 11 8 | ppncand |  |-  ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) + ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 13 |  | efiasin |  |-  ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 14 | 11 8 13 | comraddd |  |-  ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) ) | 
						
							| 15 |  | mulneg12 |  |-  ( ( _i e. CC /\ ( arcsin ` A ) e. CC ) -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) | 
						
							| 16 | 9 1 15 | sylancr |  |-  ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) | 
						
							| 17 |  | asinneg |  |-  ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( A e. CC -> ( _i x. ( arcsin ` -u A ) ) = ( _i x. -u ( arcsin ` A ) ) ) | 
						
							| 19 | 16 18 | eqtr4d |  |-  ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. ( arcsin ` -u A ) ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( exp ` ( _i x. ( arcsin ` -u A ) ) ) ) | 
						
							| 21 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 22 |  | efiasin |  |-  ( -u A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) | 
						
							| 24 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 25 | 9 24 | mpan |  |-  ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 26 |  | sqneg |  |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) | 
						
							| 29 | 25 28 | oveq12d |  |-  ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 30 | 20 23 29 | 3eqtrd |  |-  ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 31 | 11 | negcld |  |-  ( A e. CC -> -u ( _i x. A ) e. CC ) | 
						
							| 32 | 31 8 | addcomd |  |-  ( A e. CC -> ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) ) | 
						
							| 33 | 8 11 | negsubd |  |-  ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) | 
						
							| 34 | 30 32 33 | 3eqtrd |  |-  ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) | 
						
							| 35 | 14 34 | oveq12d |  |-  ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) + ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) | 
						
							| 36 | 8 | 2timesd |  |-  ( A e. CC -> ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 37 | 12 35 36 | 3eqtr4d |  |-  ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( A e. CC -> ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) = ( ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) / 2 ) ) | 
						
							| 39 |  | 2cnd |  |-  ( A e. CC -> 2 e. CC ) | 
						
							| 40 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 41 | 40 | a1i |  |-  ( A e. CC -> 2 =/= 0 ) | 
						
							| 42 | 8 39 41 | divcan3d |  |-  ( A e. CC -> ( ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) / 2 ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) | 
						
							| 43 | 3 38 42 | 3eqtrd |  |-  ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |