| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 3 |
1 2
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 |
|
ax-1cn |
|- 1 e. CC |
| 5 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 6 |
|
subcl |
|- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 7 |
4 5 6
|
sylancr |
|- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 8 |
7
|
sqrtcld |
|- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 9 |
3 8
|
addcld |
|- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 10 |
|
asinlem |
|- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
| 11 |
9 10
|
logcld |
|- ( A e. CC -> ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 12 |
|
efneg |
|- ( ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 13 |
11 12
|
syl |
|- ( A e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 14 |
|
eflog |
|- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 15 |
9 10 14
|
syl2anc |
|- ( A e. CC -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 16 |
15
|
oveq2d |
|- ( A e. CC -> ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) = ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 17 |
|
asinlem2 |
|- ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) |
| 18 |
4
|
a1i |
|- ( A e. CC -> 1 e. CC ) |
| 19 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 20 |
|
mulcl |
|- ( ( _i e. CC /\ -u A e. CC ) -> ( _i x. -u A ) e. CC ) |
| 21 |
1 19 20
|
sylancr |
|- ( A e. CC -> ( _i x. -u A ) e. CC ) |
| 22 |
19
|
sqcld |
|- ( A e. CC -> ( -u A ^ 2 ) e. CC ) |
| 23 |
|
subcl |
|- ( ( 1 e. CC /\ ( -u A ^ 2 ) e. CC ) -> ( 1 - ( -u A ^ 2 ) ) e. CC ) |
| 24 |
4 22 23
|
sylancr |
|- ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) e. CC ) |
| 25 |
24
|
sqrtcld |
|- ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) e. CC ) |
| 26 |
21 25
|
addcld |
|- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) e. CC ) |
| 27 |
18 9 26 10
|
divmuld |
|- ( A e. CC -> ( ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) <-> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) ) |
| 28 |
17 27
|
mpbird |
|- ( A e. CC -> ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 29 |
13 16 28
|
3eqtrd |
|- ( A e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 30 |
|
asinlem |
|- ( -u A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 ) |
| 31 |
19 30
|
syl |
|- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 ) |
| 32 |
11
|
negcld |
|- ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 33 |
11
|
imnegd |
|- ( A e. CC -> ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 34 |
11
|
imcld |
|- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) |
| 35 |
34
|
renegcld |
|- ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) |
| 36 |
|
pire |
|- _pi e. RR |
| 37 |
36
|
a1i |
|- ( A e. CC -> _pi e. RR ) |
| 38 |
9 10
|
logimcld |
|- ( A e. CC -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
| 39 |
38
|
simprd |
|- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) |
| 40 |
9
|
renegd |
|- ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 41 |
|
asinlem3 |
|- ( A e. CC -> 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 42 |
9
|
recld |
|- ( A e. CC -> ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR ) |
| 43 |
42
|
le0neg2d |
|- ( A e. CC -> ( 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) ) |
| 44 |
41 43
|
mpbid |
|- ( A e. CC -> -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) |
| 45 |
40 44
|
eqbrtrd |
|- ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) |
| 46 |
9
|
negcld |
|- ( A e. CC -> -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 47 |
46
|
recld |
|- ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR ) |
| 48 |
|
0re |
|- 0 e. RR |
| 49 |
|
lenlt |
|- ( ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR /\ 0 e. RR ) -> ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 <-> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 50 |
47 48 49
|
sylancl |
|- ( A e. CC -> ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 <-> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 51 |
45 50
|
mpbid |
|- ( A e. CC -> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 52 |
|
lognegb |
|- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ <-> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi ) ) |
| 53 |
9 10 52
|
syl2anc |
|- ( A e. CC -> ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ <-> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi ) ) |
| 54 |
|
rpgt0 |
|- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> 0 < -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 55 |
|
rpre |
|- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR ) |
| 56 |
55
|
rered |
|- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 57 |
54 56
|
breqtrrd |
|- ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 58 |
53 57
|
biimtrrdi |
|- ( A e. CC -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi -> 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 59 |
58
|
necon3bd |
|- ( A e. CC -> ( -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) =/= _pi ) ) |
| 60 |
51 59
|
mpd |
|- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) =/= _pi ) |
| 61 |
60
|
necomd |
|- ( A e. CC -> _pi =/= ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 62 |
34 37 39 61
|
leneltd |
|- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi ) |
| 63 |
|
ltneg |
|- ( ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ _pi e. RR ) -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi <-> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 64 |
34 36 63
|
sylancl |
|- ( A e. CC -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi <-> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 65 |
62 64
|
mpbid |
|- ( A e. CC -> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 66 |
38
|
simpld |
|- ( A e. CC -> -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 67 |
36
|
renegcli |
|- -u _pi e. RR |
| 68 |
|
ltle |
|- ( ( -u _pi e. RR /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 69 |
67 34 68
|
sylancr |
|- ( A e. CC -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 70 |
66 69
|
mpd |
|- ( A e. CC -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 71 |
|
lenegcon1 |
|- ( ( _pi e. RR /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) -> ( -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <-> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
| 72 |
36 34 71
|
sylancr |
|- ( A e. CC -> ( -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <-> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
| 73 |
70 72
|
mpbid |
|- ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) |
| 74 |
67
|
rexri |
|- -u _pi e. RR* |
| 75 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) <-> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) ) |
| 76 |
74 36 75
|
mp2an |
|- ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) <-> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) |
| 77 |
35 65 73 76
|
syl3anbrc |
|- ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) |
| 78 |
33 77
|
eqeltrd |
|- ( A e. CC -> ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) |
| 79 |
|
imf |
|- Im : CC --> RR |
| 80 |
|
ffn |
|- ( Im : CC --> RR -> Im Fn CC ) |
| 81 |
|
elpreima |
|- ( Im Fn CC -> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) <-> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC /\ ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) ) ) |
| 82 |
79 80 81
|
mp2b |
|- ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) <-> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC /\ ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) ) |
| 83 |
32 78 82
|
sylanbrc |
|- ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 84 |
|
logrn |
|- ran log = ( `' Im " ( -u _pi (,] _pi ) ) |
| 85 |
83 84
|
eleqtrrdi |
|- ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ran log ) |
| 86 |
|
logeftb |
|- ( ( ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 /\ -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ran log ) -> ( ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) |
| 87 |
26 31 85 86
|
syl3anc |
|- ( A e. CC -> ( ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) |
| 88 |
29 87
|
mpbird |
|- ( A e. CC -> ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 89 |
88
|
oveq2d |
|- ( A e. CC -> ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) = ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 90 |
|
negicn |
|- -u _i e. CC |
| 91 |
|
mulneg2 |
|- ( ( -u _i e. CC /\ ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) -> ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 92 |
90 11 91
|
sylancr |
|- ( A e. CC -> ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 93 |
89 92
|
eqtrd |
|- ( A e. CC -> ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 94 |
|
asinval |
|- ( -u A e. CC -> ( arcsin ` -u A ) = ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) ) |
| 95 |
19 94
|
syl |
|- ( A e. CC -> ( arcsin ` -u A ) = ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) ) |
| 96 |
|
asinval |
|- ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 97 |
96
|
negeqd |
|- ( A e. CC -> -u ( arcsin ` A ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 98 |
93 95 97
|
3eqtr4d |
|- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |