| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asincl | ⊢ ( 𝐴  ∈  ℂ  →  ( arcsin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 2 |  | cosval | ⊢ ( ( arcsin ‘ 𝐴 )  ∈  ℂ  →  ( cos ‘ ( arcsin ‘ 𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( arcsin ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) ) )  /  2 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( arcsin ‘ 𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( arcsin ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) ) )  /  2 ) ) | 
						
							| 4 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 5 |  | sqcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 6 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 8 | 7 | sqrtcld | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 9 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 10 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 11 | 9 10 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 12 | 8 11 8 | ppncand | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  +  ( i  ·  𝐴 ) )  +  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  −  ( i  ·  𝐴 ) ) )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 13 |  | efiasin | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  ( arcsin ‘ 𝐴 ) ) )  =  ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 14 | 11 8 13 | comraddd | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  ( arcsin ‘ 𝐴 ) ) )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  +  ( i  ·  𝐴 ) ) ) | 
						
							| 15 |  | mulneg12 | ⊢ ( ( i  ∈  ℂ  ∧  ( arcsin ‘ 𝐴 )  ∈  ℂ )  →  ( - i  ·  ( arcsin ‘ 𝐴 ) )  =  ( i  ·  - ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 16 | 9 1 15 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  ( arcsin ‘ 𝐴 ) )  =  ( i  ·  - ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 17 |  | asinneg | ⊢ ( 𝐴  ∈  ℂ  →  ( arcsin ‘ - 𝐴 )  =  - ( arcsin ‘ 𝐴 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( arcsin ‘ - 𝐴 ) )  =  ( i  ·  - ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 19 | 16 18 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  ( arcsin ‘ 𝐴 ) )  =  ( i  ·  ( arcsin ‘ - 𝐴 ) ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) )  =  ( exp ‘ ( i  ·  ( arcsin ‘ - 𝐴 ) ) ) ) | 
						
							| 21 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 22 |  | efiasin | ⊢ ( - 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  ( arcsin ‘ - 𝐴 ) ) )  =  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  ( arcsin ‘ - 𝐴 ) ) )  =  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 24 |  | mulneg2 | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 25 | 9 24 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 26 |  | sqneg | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  −  ( - 𝐴 ↑ 2 ) )  =  ( 1  −  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) )  =  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 29 | 25 28 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) )  =  ( - ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 30 | 20 23 29 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) )  =  ( - ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 31 | 11 | negcld | ⊢ ( 𝐴  ∈  ℂ  →  - ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 32 | 31 8 | addcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( - ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  +  - ( i  ·  𝐴 ) ) ) | 
						
							| 33 | 8 11 | negsubd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  +  - ( i  ·  𝐴 ) )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  −  ( i  ·  𝐴 ) ) ) | 
						
							| 34 | 30 32 33 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  −  ( i  ·  𝐴 ) ) ) | 
						
							| 35 | 14 34 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( i  ·  ( arcsin ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) ) )  =  ( ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  +  ( i  ·  𝐴 ) )  +  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  −  ( i  ·  𝐴 ) ) ) ) | 
						
							| 36 | 8 | 2timesd | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 37 | 12 35 36 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( i  ·  ( arcsin ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) ) )  =  ( 2  ·  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( exp ‘ ( i  ·  ( arcsin ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arcsin ‘ 𝐴 ) ) ) )  /  2 )  =  ( ( 2  ·  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  /  2 ) ) | 
						
							| 39 |  | 2cnd | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℂ ) | 
						
							| 40 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 41 | 40 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ≠  0 ) | 
						
							| 42 | 8 39 41 | divcan3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  /  2 )  =  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 43 | 3 38 42 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( arcsin ‘ 𝐴 ) )  =  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) |