| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
| 2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
| 4 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
| 5 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 6 |
2 5
|
ax-mp |
⊢ 𝑁 ∈ ℝ+ |
| 7 |
|
modabs2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) |
| 8 |
4 6 7
|
sylancl |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 mod 𝑁 ) = ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) |
| 10 |
9
|
mpteq2ia |
⊢ ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) |
| 12 |
11
|
cbvmptv |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) |
| 13 |
3 12
|
eqtri |
⊢ 𝐼 = ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) |
| 14 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 15 |
14
|
anim2i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ) ) |
| 16 |
15
|
ancomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
| 17 |
|
zmodcl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑦 mod 𝑁 ) ∈ ℕ0 ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 mod 𝑁 ) ∈ ℕ0 ) |
| 19 |
13
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 𝐼 = ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) ) |
| 20 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ) |
| 21 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 mod 𝑁 ) → ( 𝑥 mod 𝑁 ) = ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) |
| 22 |
18 19 20 21
|
fmptco |
⊢ ( 𝑁 ∈ ℕ → ( 𝐼 ∘ 𝐼 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) ) |
| 23 |
2 22
|
ax-mp |
⊢ ( 𝐼 ∘ 𝐼 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) |
| 24 |
10 13 23
|
3eqtr4ri |
⊢ ( 𝐼 ∘ 𝐼 ) = 𝐼 |