Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
|
elfzonn0 |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
7 |
6
|
ralrimiva |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ∀ 𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) |
9 |
8
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ↔ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
10 |
7 9
|
sylib |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
11 |
|
nn0ex |
⊢ ℕ0 ∈ V |
12 |
11 11
|
elmap |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ ( ℕ0 ↑m ℕ0 ) ↔ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
13 |
10 12
|
sylibr |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ ( ℕ0 ↑m ℕ0 ) ) |
14 |
4
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) ) |
15 |
|
id |
⊢ ( 𝑛 = 𝐾 → 𝑛 = 𝐾 ) |
16 |
15
|
mpteq2dv |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
18 |
|
id |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
19 |
11
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
21 |
14 17 18 20
|
fvmptd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
23 |
1 22
|
efmndbas |
⊢ ( Base ‘ 𝑀 ) = ( ℕ0 ↑m ℕ0 ) |
24 |
23
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( Base ‘ 𝑀 ) = ( ℕ0 ↑m ℕ0 ) ) |
25 |
13 21 24
|
3eltr4d |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) ) |