Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
4
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) ) |
6 |
|
id |
⊢ ( 𝑛 = 𝐾 → 𝑛 = 𝐾 ) |
7 |
6
|
mpteq2dv |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
9 |
|
id |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
12 |
11
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
13 |
5 8 9 12
|
fvmptd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
16 |
|
eqidd |
⊢ ( ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → 𝐾 = 𝐾 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
18 |
1 17
|
efmndbasf |
⊢ ( 𝐹 ∈ ( Base ‘ 𝑀 ) → 𝐹 : ℕ0 ⟶ ℕ0 ) |
19 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
20 |
19
|
ex |
⊢ ( 𝐹 : ℕ0 ⟶ ℕ0 → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
21 |
18 20
|
syl |
⊢ ( 𝐹 ∈ ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
23 |
22
|
imp |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
24 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
25 |
15 16 23 24
|
fvmptd |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) = 𝐾 ) |
26 |
25
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
27 |
1 2 3 4
|
smndex1gbas |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) ) |
28 |
1 17
|
efmndbasf |
⊢ ( ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) → ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
29 |
27 28
|
syl |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
30 |
|
fcompt |
⊢ ( ( ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ∧ 𝐹 : ℕ0 ⟶ ℕ0 ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
31 |
29 18 30
|
syl2anr |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
32 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 𝐾 = 𝐾 ) |
33 |
32
|
cbvmptv |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) |
34 |
7 33
|
eqtrdi |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
36 |
10
|
mptex |
⊢ ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
37 |
36
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
38 |
5 35 9 37
|
fvmptd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
40 |
26 31 39
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝐺 ‘ 𝐾 ) ) |