| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
| 2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
| 4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
| 5 |
4
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) ) |
| 6 |
|
id |
⊢ ( 𝑛 = 𝐾 → 𝑛 = 𝐾 ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 9 |
|
id |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
| 10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 11 |
10
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
| 13 |
5 8 9 12
|
fvmptd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 16 |
|
eqidd |
⊢ ( ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → 𝐾 = 𝐾 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 18 |
1 17
|
efmndbasf |
⊢ ( 𝐹 ∈ ( Base ‘ 𝑀 ) → 𝐹 : ℕ0 ⟶ ℕ0 ) |
| 19 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
| 20 |
19
|
ex |
⊢ ( 𝐹 : ℕ0 ⟶ ℕ0 → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 21 |
18 20
|
syl |
⊢ ( 𝐹 ∈ ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
| 24 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
| 25 |
15 16 23 24
|
fvmptd |
⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) = 𝐾 ) |
| 26 |
25
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 27 |
1 2 3 4
|
smndex1gbas |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) ) |
| 28 |
1 17
|
efmndbasf |
⊢ ( ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) → ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 29 |
27 28
|
syl |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 30 |
|
fcompt |
⊢ ( ( ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ∧ 𝐹 : ℕ0 ⟶ ℕ0 ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 31 |
29 18 30
|
syl2anr |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 32 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 𝐾 = 𝐾 ) |
| 33 |
32
|
cbvmptv |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) |
| 34 |
7 33
|
eqtrdi |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 36 |
10
|
mptex |
⊢ ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
| 37 |
36
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
| 38 |
5 35 9 37
|
fvmptd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 40 |
26 31 39
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝐺 ‘ 𝐾 ) ) |