Description: ltmulgt11d without ax-mulcom . (Contributed by SN, 26-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sn-ltmulgt11d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
sn-ltmulgt11d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
sn-ltmulgt11d.1 | ⊢ ( 𝜑 → 0 < 𝐵 ) | ||
Assertion | sn-ltmulgt11d | ⊢ ( 𝜑 → ( 1 < 𝐴 ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-ltmulgt11d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | sn-ltmulgt11d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | sn-ltmulgt11d.1 | ⊢ ( 𝜑 → 0 < 𝐵 ) | |
4 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
5 | 4 1 2 3 | sn-ltmul2d | ⊢ ( 𝜑 → ( ( 𝐵 · 1 ) < ( 𝐵 · 𝐴 ) ↔ 1 < 𝐴 ) ) |
6 | ax-1rid | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 1 ) = 𝐵 ) | |
7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐵 · 1 ) = 𝐵 ) |
8 | 7 | breq1d | ⊢ ( 𝜑 → ( ( 𝐵 · 1 ) < ( 𝐵 · 𝐴 ) ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |
9 | 5 8 | bitr3d | ⊢ ( 𝜑 → ( 1 < 𝐴 ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |