Description: ltmulgt11d without ax-mulcom . (Contributed by SN, 26-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-ltmulgt11d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| sn-ltmulgt11d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| sn-ltmulgt11d.1 | ⊢ ( 𝜑 → 0 < 𝐵 ) | ||
| Assertion | sn-ltmulgt11d | ⊢ ( 𝜑 → ( 1 < 𝐴 ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-ltmulgt11d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | sn-ltmulgt11d.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | sn-ltmulgt11d.1 | ⊢ ( 𝜑 → 0 < 𝐵 ) | |
| 4 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 5 | 4 1 2 3 | sn-ltmul2d | ⊢ ( 𝜑 → ( ( 𝐵 · 1 ) < ( 𝐵 · 𝐴 ) ↔ 1 < 𝐴 ) ) |
| 6 | ax-1rid | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 1 ) = 𝐵 ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐵 · 1 ) = 𝐵 ) |
| 8 | 7 | breq1d | ⊢ ( 𝜑 → ( ( 𝐵 · 1 ) < ( 𝐵 · 𝐴 ) ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |
| 9 | 5 8 | bitr3d | ⊢ ( 𝜑 → ( 1 < 𝐴 ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |