Metamath Proof Explorer


Theorem sn-ltmulgt11d

Description: ltmulgt11d without ax-mulcom . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses sn-ltmulgt11d.a ( 𝜑𝐴 ∈ ℝ )
sn-ltmulgt11d.b ( 𝜑𝐵 ∈ ℝ )
sn-ltmulgt11d.1 ( 𝜑 → 0 < 𝐵 )
Assertion sn-ltmulgt11d ( 𝜑 → ( 1 < 𝐴𝐵 < ( 𝐵 · 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sn-ltmulgt11d.a ( 𝜑𝐴 ∈ ℝ )
2 sn-ltmulgt11d.b ( 𝜑𝐵 ∈ ℝ )
3 sn-ltmulgt11d.1 ( 𝜑 → 0 < 𝐵 )
4 1red ( 𝜑 → 1 ∈ ℝ )
5 4 1 2 3 sn-ltmul2d ( 𝜑 → ( ( 𝐵 · 1 ) < ( 𝐵 · 𝐴 ) ↔ 1 < 𝐴 ) )
6 ax-1rid ( 𝐵 ∈ ℝ → ( 𝐵 · 1 ) = 𝐵 )
7 2 6 syl ( 𝜑 → ( 𝐵 · 1 ) = 𝐵 )
8 7 breq1d ( 𝜑 → ( ( 𝐵 · 1 ) < ( 𝐵 · 𝐴 ) ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) )
9 5 8 bitr3d ( 𝜑 → ( 1 < 𝐴𝐵 < ( 𝐵 · 𝐴 ) ) )