Metamath Proof Explorer


Theorem sn-ltmulgt11d

Description: ltmulgt11d without ax-mulcom . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses sn-ltmulgt11d.a
|- ( ph -> A e. RR )
sn-ltmulgt11d.b
|- ( ph -> B e. RR )
sn-ltmulgt11d.1
|- ( ph -> 0 < B )
Assertion sn-ltmulgt11d
|- ( ph -> ( 1 < A <-> B < ( B x. A ) ) )

Proof

Step Hyp Ref Expression
1 sn-ltmulgt11d.a
 |-  ( ph -> A e. RR )
2 sn-ltmulgt11d.b
 |-  ( ph -> B e. RR )
3 sn-ltmulgt11d.1
 |-  ( ph -> 0 < B )
4 1red
 |-  ( ph -> 1 e. RR )
5 4 1 2 3 sn-ltmul2d
 |-  ( ph -> ( ( B x. 1 ) < ( B x. A ) <-> 1 < A ) )
6 ax-1rid
 |-  ( B e. RR -> ( B x. 1 ) = B )
7 2 6 syl
 |-  ( ph -> ( B x. 1 ) = B )
8 7 breq1d
 |-  ( ph -> ( ( B x. 1 ) < ( B x. A ) <-> B < ( B x. A ) ) )
9 5 8 bitr3d
 |-  ( ph -> ( 1 < A <-> B < ( B x. A ) ) )