Description: ltmulgt11d without ax-mulcom . (Contributed by SN, 26-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-ltmulgt11d.a | |- ( ph -> A e. RR ) |
|
| sn-ltmulgt11d.b | |- ( ph -> B e. RR ) |
||
| sn-ltmulgt11d.1 | |- ( ph -> 0 < B ) |
||
| Assertion | sn-ltmulgt11d | |- ( ph -> ( 1 < A <-> B < ( B x. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-ltmulgt11d.a | |- ( ph -> A e. RR ) |
|
| 2 | sn-ltmulgt11d.b | |- ( ph -> B e. RR ) |
|
| 3 | sn-ltmulgt11d.1 | |- ( ph -> 0 < B ) |
|
| 4 | 1red | |- ( ph -> 1 e. RR ) |
|
| 5 | 4 1 2 3 | sn-ltmul2d | |- ( ph -> ( ( B x. 1 ) < ( B x. A ) <-> 1 < A ) ) |
| 6 | ax-1rid | |- ( B e. RR -> ( B x. 1 ) = B ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( B x. 1 ) = B ) |
| 8 | 7 | breq1d | |- ( ph -> ( ( B x. 1 ) < ( B x. A ) <-> B < ( B x. A ) ) ) |
| 9 | 5 8 | bitr3d | |- ( ph -> ( 1 < A <-> B < ( B x. A ) ) ) |