| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sn-ltmul2d.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | sn-ltmul2d.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | sn-ltmul2d.c |  |-  ( ph -> C e. RR ) | 
						
							| 4 |  | sn-ltmul2d.1 |  |-  ( ph -> 0 < C ) | 
						
							| 5 |  | rersubcl |  |-  ( ( B e. RR /\ A e. RR ) -> ( B -R A ) e. RR ) | 
						
							| 6 | 2 1 5 | syl2anc |  |-  ( ph -> ( B -R A ) e. RR ) | 
						
							| 7 | 3 6 4 | mulgt0b2d |  |-  ( ph -> ( 0 < ( B -R A ) <-> 0 < ( C x. ( B -R A ) ) ) ) | 
						
							| 8 |  | resubdi |  |-  ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( C x. ( B -R A ) ) = ( ( C x. B ) -R ( C x. A ) ) ) | 
						
							| 9 | 3 2 1 8 | syl3anc |  |-  ( ph -> ( C x. ( B -R A ) ) = ( ( C x. B ) -R ( C x. A ) ) ) | 
						
							| 10 | 9 | breq2d |  |-  ( ph -> ( 0 < ( C x. ( B -R A ) ) <-> 0 < ( ( C x. B ) -R ( C x. A ) ) ) ) | 
						
							| 11 | 7 10 | bitr2d |  |-  ( ph -> ( 0 < ( ( C x. B ) -R ( C x. A ) ) <-> 0 < ( B -R A ) ) ) | 
						
							| 12 | 3 1 | remulcld |  |-  ( ph -> ( C x. A ) e. RR ) | 
						
							| 13 | 3 2 | remulcld |  |-  ( ph -> ( C x. B ) e. RR ) | 
						
							| 14 |  | reposdif |  |-  ( ( ( C x. A ) e. RR /\ ( C x. B ) e. RR ) -> ( ( C x. A ) < ( C x. B ) <-> 0 < ( ( C x. B ) -R ( C x. A ) ) ) ) | 
						
							| 15 | 12 13 14 | syl2anc |  |-  ( ph -> ( ( C x. A ) < ( C x. B ) <-> 0 < ( ( C x. B ) -R ( C x. A ) ) ) ) | 
						
							| 16 |  | reposdif |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B -R A ) ) ) | 
						
							| 17 | 1 2 16 | syl2anc |  |-  ( ph -> ( A < B <-> 0 < ( B -R A ) ) ) | 
						
							| 18 | 11 15 17 | 3bitr4d |  |-  ( ph -> ( ( C x. A ) < ( C x. B ) <-> A < B ) ) |