| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgt0b2d.a |
|- ( ph -> A e. RR ) |
| 2 |
|
mulgt0b2d.b |
|- ( ph -> B e. RR ) |
| 3 |
|
mulgt0b2d.1 |
|- ( ph -> 0 < B ) |
| 4 |
1
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. RR ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ 0 < A ) -> B e. RR ) |
| 6 |
|
simpr |
|- ( ( ph /\ 0 < A ) -> 0 < A ) |
| 7 |
3
|
adantr |
|- ( ( ph /\ 0 < A ) -> 0 < B ) |
| 8 |
4 5 6 7
|
mulgt0d |
|- ( ( ph /\ 0 < A ) -> 0 < ( A x. B ) ) |
| 9 |
1 2
|
remulcld |
|- ( ph -> ( A x. B ) e. RR ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( A x. B ) e. RR ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ 0 < ( A x. B ) ) -> B e. RR ) |
| 12 |
|
simpr |
|- ( ( ph /\ 0 < ( A x. B ) ) -> 0 < ( A x. B ) ) |
| 13 |
12
|
gt0ne0d |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( A x. B ) =/= 0 ) |
| 14 |
|
oveq2 |
|- ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ 0 < ( A x. B ) ) -> A e. RR ) |
| 16 |
|
remul01 |
|- ( A e. RR -> ( A x. 0 ) = 0 ) |
| 17 |
15 16
|
syl |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( A x. 0 ) = 0 ) |
| 18 |
14 17
|
sylan9eqr |
|- ( ( ( ph /\ 0 < ( A x. B ) ) /\ B = 0 ) -> ( A x. B ) = 0 ) |
| 19 |
13 18
|
mteqand |
|- ( ( ph /\ 0 < ( A x. B ) ) -> B =/= 0 ) |
| 20 |
11 19
|
sn-rereccld |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( 1 /R B ) e. RR ) |
| 21 |
2 3
|
sn-recgt0d |
|- ( ph -> 0 < ( 1 /R B ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ 0 < ( A x. B ) ) -> 0 < ( 1 /R B ) ) |
| 23 |
10 20 12 22
|
mulgt0d |
|- ( ( ph /\ 0 < ( A x. B ) ) -> 0 < ( ( A x. B ) x. ( 1 /R B ) ) ) |
| 24 |
15
|
recnd |
|- ( ( ph /\ 0 < ( A x. B ) ) -> A e. CC ) |
| 25 |
11
|
recnd |
|- ( ( ph /\ 0 < ( A x. B ) ) -> B e. CC ) |
| 26 |
20
|
recnd |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( 1 /R B ) e. CC ) |
| 27 |
24 25 26
|
mulassd |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( ( A x. B ) x. ( 1 /R B ) ) = ( A x. ( B x. ( 1 /R B ) ) ) ) |
| 28 |
3
|
gt0ne0d |
|- ( ph -> B =/= 0 ) |
| 29 |
2 28
|
rerecid |
|- ( ph -> ( B x. ( 1 /R B ) ) = 1 ) |
| 30 |
29
|
oveq2d |
|- ( ph -> ( A x. ( B x. ( 1 /R B ) ) ) = ( A x. 1 ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( A x. ( B x. ( 1 /R B ) ) ) = ( A x. 1 ) ) |
| 32 |
|
ax-1rid |
|- ( A e. RR -> ( A x. 1 ) = A ) |
| 33 |
15 32
|
syl |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( A x. 1 ) = A ) |
| 34 |
27 31 33
|
3eqtrd |
|- ( ( ph /\ 0 < ( A x. B ) ) -> ( ( A x. B ) x. ( 1 /R B ) ) = A ) |
| 35 |
23 34
|
breqtrd |
|- ( ( ph /\ 0 < ( A x. B ) ) -> 0 < A ) |
| 36 |
8 35
|
impbida |
|- ( ph -> ( 0 < A <-> 0 < ( A x. B ) ) ) |