| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgt0b2d.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | mulgt0b2d.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | mulgt0b2d.1 |  |-  ( ph -> 0 < A ) | 
						
							| 4 | 1 | adantr |  |-  ( ( ph /\ 0 < B ) -> A e. RR ) | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ 0 < B ) -> B e. RR ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ 0 < B ) -> 0 < A ) | 
						
							| 7 |  | simpr |  |-  ( ( ph /\ 0 < B ) -> 0 < B ) | 
						
							| 8 | 4 5 6 7 | mulgt0d |  |-  ( ( ph /\ 0 < B ) -> 0 < ( A x. B ) ) | 
						
							| 9 | 8 | ex |  |-  ( ph -> ( 0 < B -> 0 < ( A x. B ) ) ) | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 ) -> A e. RR ) | 
						
							| 11 |  | 1re |  |-  1 e. RR | 
						
							| 12 |  | rernegcl |  |-  ( 1 e. RR -> ( 0 -R 1 ) e. RR ) | 
						
							| 13 | 11 12 | mp1i |  |-  ( ph -> ( 0 -R 1 ) e. RR ) | 
						
							| 14 | 2 13 | remulcld |  |-  ( ph -> ( B x. ( 0 -R 1 ) ) e. RR ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 ) -> ( B x. ( 0 -R 1 ) ) e. RR ) | 
						
							| 16 | 3 | adantr |  |-  ( ( ph /\ ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 ) -> 0 < A ) | 
						
							| 17 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 18 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 19 | 13 | recnd |  |-  ( ph -> ( 0 -R 1 ) e. CC ) | 
						
							| 20 | 17 18 19 | mulassd |  |-  ( ph -> ( ( A x. B ) x. ( 0 -R 1 ) ) = ( A x. ( B x. ( 0 -R 1 ) ) ) ) | 
						
							| 21 | 20 | breq1d |  |-  ( ph -> ( ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 <-> ( A x. ( B x. ( 0 -R 1 ) ) ) < 0 ) ) | 
						
							| 22 | 21 | biimpa |  |-  ( ( ph /\ ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 ) -> ( A x. ( B x. ( 0 -R 1 ) ) ) < 0 ) | 
						
							| 23 | 10 15 16 22 | mulgt0con2d |  |-  ( ( ph /\ ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 ) -> ( B x. ( 0 -R 1 ) ) < 0 ) | 
						
							| 24 | 23 | ex |  |-  ( ph -> ( ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 -> ( B x. ( 0 -R 1 ) ) < 0 ) ) | 
						
							| 25 | 1 2 | remulcld |  |-  ( ph -> ( A x. B ) e. RR ) | 
						
							| 26 |  | relt0neg2 |  |-  ( ( A x. B ) e. RR -> ( 0 < ( A x. B ) <-> ( 0 -R ( A x. B ) ) < 0 ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> ( 0 < ( A x. B ) <-> ( 0 -R ( A x. B ) ) < 0 ) ) | 
						
							| 28 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 29 | 25 28 | remulneg2d |  |-  ( ph -> ( ( A x. B ) x. ( 0 -R 1 ) ) = ( 0 -R ( ( A x. B ) x. 1 ) ) ) | 
						
							| 30 |  | ax-1rid |  |-  ( ( A x. B ) e. RR -> ( ( A x. B ) x. 1 ) = ( A x. B ) ) | 
						
							| 31 | 25 30 | syl |  |-  ( ph -> ( ( A x. B ) x. 1 ) = ( A x. B ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ph -> ( 0 -R ( ( A x. B ) x. 1 ) ) = ( 0 -R ( A x. B ) ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ph -> ( ( A x. B ) x. ( 0 -R 1 ) ) = ( 0 -R ( A x. B ) ) ) | 
						
							| 34 | 33 | breq1d |  |-  ( ph -> ( ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 <-> ( 0 -R ( A x. B ) ) < 0 ) ) | 
						
							| 35 | 27 34 | bitr4d |  |-  ( ph -> ( 0 < ( A x. B ) <-> ( ( A x. B ) x. ( 0 -R 1 ) ) < 0 ) ) | 
						
							| 36 |  | relt0neg2 |  |-  ( B e. RR -> ( 0 < B <-> ( 0 -R B ) < 0 ) ) | 
						
							| 37 | 2 36 | syl |  |-  ( ph -> ( 0 < B <-> ( 0 -R B ) < 0 ) ) | 
						
							| 38 | 2 28 | remulneg2d |  |-  ( ph -> ( B x. ( 0 -R 1 ) ) = ( 0 -R ( B x. 1 ) ) ) | 
						
							| 39 |  | ax-1rid |  |-  ( B e. RR -> ( B x. 1 ) = B ) | 
						
							| 40 | 2 39 | syl |  |-  ( ph -> ( B x. 1 ) = B ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ph -> ( 0 -R ( B x. 1 ) ) = ( 0 -R B ) ) | 
						
							| 42 | 38 41 | eqtrd |  |-  ( ph -> ( B x. ( 0 -R 1 ) ) = ( 0 -R B ) ) | 
						
							| 43 | 42 | breq1d |  |-  ( ph -> ( ( B x. ( 0 -R 1 ) ) < 0 <-> ( 0 -R B ) < 0 ) ) | 
						
							| 44 | 37 43 | bitr4d |  |-  ( ph -> ( 0 < B <-> ( B x. ( 0 -R 1 ) ) < 0 ) ) | 
						
							| 45 | 24 35 44 | 3imtr4d |  |-  ( ph -> ( 0 < ( A x. B ) -> 0 < B ) ) | 
						
							| 46 | 9 45 | impbid |  |-  ( ph -> ( 0 < B <-> 0 < ( A x. B ) ) ) |