Metamath Proof Explorer


Theorem mulgt0b2d

Description: Biconditional, deductive form of mulgt0 . The second factor is positive iff the product is. Note that the commuted form cannot be proven since resubdi does not have a commuted form. (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses mulgt0b2d.a φ A
mulgt0b2d.b φ B
mulgt0b2d.1 φ 0 < A
Assertion mulgt0b2d φ 0 < B 0 < A B

Proof

Step Hyp Ref Expression
1 mulgt0b2d.a φ A
2 mulgt0b2d.b φ B
3 mulgt0b2d.1 φ 0 < A
4 1 adantr φ 0 < B A
5 2 adantr φ 0 < B B
6 3 adantr φ 0 < B 0 < A
7 simpr φ 0 < B 0 < B
8 4 5 6 7 mulgt0d φ 0 < B 0 < A B
9 8 ex φ 0 < B 0 < A B
10 1 adantr φ A B 0 - 1 < 0 A
11 1re 1
12 rernegcl 1 0 - 1
13 11 12 mp1i φ 0 - 1
14 2 13 remulcld φ B 0 - 1
15 14 adantr φ A B 0 - 1 < 0 B 0 - 1
16 3 adantr φ A B 0 - 1 < 0 0 < A
17 1 recnd φ A
18 2 recnd φ B
19 13 recnd φ 0 - 1
20 17 18 19 mulassd φ A B 0 - 1 = A B 0 - 1
21 20 breq1d φ A B 0 - 1 < 0 A B 0 - 1 < 0
22 21 biimpa φ A B 0 - 1 < 0 A B 0 - 1 < 0
23 10 15 16 22 mulgt0con2d φ A B 0 - 1 < 0 B 0 - 1 < 0
24 23 ex φ A B 0 - 1 < 0 B 0 - 1 < 0
25 1 2 remulcld φ A B
26 relt0neg2 A B 0 < A B 0 - A B < 0
27 25 26 syl φ 0 < A B 0 - A B < 0
28 0red φ 0
29 1red φ 1
30 resubdi A B 0 1 A B 0 - 1 = A B 0 - A B 1
31 25 28 29 30 syl3anc φ A B 0 - 1 = A B 0 - A B 1
32 remul01 A B A B 0 = 0
33 ax-1rid A B A B 1 = A B
34 32 33 oveq12d A B A B 0 - A B 1 = 0 - A B
35 25 34 syl φ A B 0 - A B 1 = 0 - A B
36 31 35 eqtrd φ A B 0 - 1 = 0 - A B
37 36 breq1d φ A B 0 - 1 < 0 0 - A B < 0
38 27 37 bitr4d φ 0 < A B A B 0 - 1 < 0
39 relt0neg2 B 0 < B 0 - B < 0
40 2 39 syl φ 0 < B 0 - B < 0
41 resubdi B 0 1 B 0 - 1 = B 0 - B 1
42 2 28 29 41 syl3anc φ B 0 - 1 = B 0 - B 1
43 remul01 B B 0 = 0
44 ax-1rid B B 1 = B
45 43 44 oveq12d B B 0 - B 1 = 0 - B
46 2 45 syl φ B 0 - B 1 = 0 - B
47 42 46 eqtrd φ B 0 - 1 = 0 - B
48 47 breq1d φ B 0 - 1 < 0 0 - B < 0
49 40 48 bitr4d φ 0 < B B 0 - 1 < 0
50 24 38 49 3imtr4d φ 0 < A B 0 < B
51 9 50 impbid φ 0 < B 0 < A B