| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgt0b2d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
mulgt0b2d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
mulgt0b2d.1 |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < 𝐵 ) |
| 8 |
4 5 6 7
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < ( 𝐴 · 𝐵 ) ) |
| 9 |
1 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
| 13 |
12
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
| 14 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 · 𝐵 ) = ( 𝐴 · 0 ) ) |
| 15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 16 |
|
remul01 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) = 0 ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐴 · 0 ) = 0 ) |
| 18 |
14 17
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐵 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) |
| 19 |
13 18
|
mteqand |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐵 ≠ 0 ) |
| 20 |
11 19
|
sn-rereccld |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 1 /ℝ 𝐵 ) ∈ ℝ ) |
| 21 |
2 3
|
sn-recgt0d |
⊢ ( 𝜑 → 0 < ( 1 /ℝ 𝐵 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < ( 1 /ℝ 𝐵 ) ) |
| 23 |
10 20 12 22
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < ( ( 𝐴 · 𝐵 ) · ( 1 /ℝ 𝐵 ) ) ) |
| 24 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 25 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 26 |
20
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 1 /ℝ 𝐵 ) ∈ ℂ ) |
| 27 |
24 25 26
|
mulassd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) · ( 1 /ℝ 𝐵 ) ) = ( 𝐴 · ( 𝐵 · ( 1 /ℝ 𝐵 ) ) ) ) |
| 28 |
3
|
gt0ne0d |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 29 |
2 28
|
rerecid |
⊢ ( 𝜑 → ( 𝐵 · ( 1 /ℝ 𝐵 ) ) = 1 ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 /ℝ 𝐵 ) ) ) = ( 𝐴 · 1 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐴 · ( 𝐵 · ( 1 /ℝ 𝐵 ) ) ) = ( 𝐴 · 1 ) ) |
| 32 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
| 33 |
15 32
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 34 |
27 31 33
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) · ( 1 /ℝ 𝐵 ) ) = 𝐴 ) |
| 35 |
23 34
|
breqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < 𝐴 ) |
| 36 |
8 35
|
impbida |
⊢ ( 𝜑 → ( 0 < 𝐴 ↔ 0 < ( 𝐴 · 𝐵 ) ) ) |