Metamath Proof Explorer


Theorem mulgt0con2d

Description: Lemma for mulgt0b2d and contrapositive of mulgt0 . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses mulgt0con2d.a φ A
mulgt0con2d.b φ B
mulgt0con2d.1 φ 0 < A
mulgt0con2d.2 φ A B < 0
Assertion mulgt0con2d φ B < 0

Proof

Step Hyp Ref Expression
1 mulgt0con2d.a φ A
2 mulgt0con2d.b φ B
3 mulgt0con2d.1 φ 0 < A
4 mulgt0con2d.2 φ A B < 0
5 1 2 remulcld φ A B
6 1 adantr φ 0 < B A
7 2 adantr φ 0 < B B
8 3 adantr φ 0 < B 0 < A
9 simpr φ 0 < B 0 < B
10 6 7 8 9 mulgt0d φ 0 < B 0 < A B
11 10 ex φ 0 < B 0 < A B
12 remul01 A A 0 = 0
13 1 12 syl φ A 0 = 0
14 oveq2 B = 0 A B = A 0
15 14 eqeq1d B = 0 A B = 0 A 0 = 0
16 13 15 syl5ibrcom φ B = 0 A B = 0
17 2 5 11 16 mulgt0con1dlem φ A B < 0 B < 0
18 4 17 mpd φ B < 0