Metamath Proof Explorer


Theorem sn-ltmul2d

Description: ltmul2d without ax-mulcom . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses sn-ltmul2d.a φA
sn-ltmul2d.b φB
sn-ltmul2d.c φC
sn-ltmul2d.1 φ0<C
Assertion sn-ltmul2d φCA<CBA<B

Proof

Step Hyp Ref Expression
1 sn-ltmul2d.a φA
2 sn-ltmul2d.b φB
3 sn-ltmul2d.c φC
4 sn-ltmul2d.1 φ0<C
5 rersubcl BAB-A
6 2 1 5 syl2anc φB-A
7 3 6 4 mulgt0b2d φ0<B-A0<CB-A
8 resubdi CBACB-A=CB-CA
9 3 2 1 8 syl3anc φCB-A=CB-CA
10 9 breq2d φ0<CB-A0<CB-CA
11 7 10 bitr2d φ0<CB-CA0<B-A
12 3 1 remulcld φCA
13 3 2 remulcld φCB
14 reposdif CACBCA<CB0<CB-CA
15 12 13 14 syl2anc φCA<CB0<CB-CA
16 reposdif ABA<B0<B-A
17 1 2 16 syl2anc φA<B0<B-A
18 11 15 17 3bitr4d φCA<CBA<B