Metamath Proof Explorer


Theorem sn-ltmulgt11d

Description: ltmulgt11d without ax-mulcom . (Contributed by SN, 26-Jun-2024)

Ref Expression
Hypotheses sn-ltmulgt11d.a φ A
sn-ltmulgt11d.b φ B
sn-ltmulgt11d.1 φ 0 < B
Assertion sn-ltmulgt11d φ 1 < A B < B A

Proof

Step Hyp Ref Expression
1 sn-ltmulgt11d.a φ A
2 sn-ltmulgt11d.b φ B
3 sn-ltmulgt11d.1 φ 0 < B
4 1red φ 1
5 4 1 2 3 sn-ltmul2d φ B 1 < B A 1 < A
6 ax-1rid B B 1 = B
7 2 6 syl φ B 1 = B
8 7 breq1d φ B 1 < B A B < B A
9 5 8 bitr3d φ 1 < A B < B A