Description: The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-recgt0d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| sn-recgt0d.z | ⊢ ( 𝜑 → 0 < 𝐴 ) | ||
| Assertion | sn-recgt0d | ⊢ ( 𝜑 → 0 < ( 1 /ℝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-recgt0d.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | sn-recgt0d.z | ⊢ ( 𝜑 → 0 < 𝐴 ) | |
| 3 | sn-0lt1 | ⊢ 0 < 1 | |
| 4 | 2 | gt0ne0d | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 5 | 1 4 | rerecid | ⊢ ( 𝜑 → ( 𝐴 · ( 1 /ℝ 𝐴 ) ) = 1 ) |
| 6 | 3 5 | breqtrrid | ⊢ ( 𝜑 → 0 < ( 𝐴 · ( 1 /ℝ 𝐴 ) ) ) |
| 7 | 1 4 | sn-rereccld | ⊢ ( 𝜑 → ( 1 /ℝ 𝐴 ) ∈ ℝ ) |
| 8 | 1 7 2 | mulgt0b1d | ⊢ ( 𝜑 → ( 0 < ( 1 /ℝ 𝐴 ) ↔ 0 < ( 𝐴 · ( 1 /ℝ 𝐴 ) ) ) ) |
| 9 | 6 8 | mpbird | ⊢ ( 𝜑 → 0 < ( 1 /ℝ 𝐴 ) ) |