Metamath Proof Explorer


Theorem sn-recgt0d

Description: The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025)

Ref Expression
Hypotheses sn-recgt0d.a ( 𝜑𝐴 ∈ ℝ )
sn-recgt0d.z ( 𝜑 → 0 < 𝐴 )
Assertion sn-recgt0d ( 𝜑 → 0 < ( 1 / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sn-recgt0d.a ( 𝜑𝐴 ∈ ℝ )
2 sn-recgt0d.z ( 𝜑 → 0 < 𝐴 )
3 sn-0lt1 0 < 1
4 2 gt0ne0d ( 𝜑𝐴 ≠ 0 )
5 1 4 rerecid ( 𝜑 → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 )
6 3 5 breqtrrid ( 𝜑 → 0 < ( 𝐴 · ( 1 / 𝐴 ) ) )
7 1 4 sn-rereccld ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ )
8 1 7 2 mulgt0b1d ( 𝜑 → ( 0 < ( 1 / 𝐴 ) ↔ 0 < ( 𝐴 · ( 1 / 𝐴 ) ) ) )
9 6 8 mpbird ( 𝜑 → 0 < ( 1 / 𝐴 ) )