Metamath Proof Explorer


Theorem sn-recgt0d

Description: The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025)

Ref Expression
Hypotheses sn-recgt0d.a
|- ( ph -> A e. RR )
sn-recgt0d.z
|- ( ph -> 0 < A )
Assertion sn-recgt0d
|- ( ph -> 0 < ( 1 /R A ) )

Proof

Step Hyp Ref Expression
1 sn-recgt0d.a
 |-  ( ph -> A e. RR )
2 sn-recgt0d.z
 |-  ( ph -> 0 < A )
3 sn-0lt1
 |-  0 < 1
4 2 gt0ne0d
 |-  ( ph -> A =/= 0 )
5 1 4 rerecid
 |-  ( ph -> ( A x. ( 1 /R A ) ) = 1 )
6 3 5 breqtrrid
 |-  ( ph -> 0 < ( A x. ( 1 /R A ) ) )
7 1 4 sn-rereccld
 |-  ( ph -> ( 1 /R A ) e. RR )
8 1 7 2 mulgt0b1d
 |-  ( ph -> ( 0 < ( 1 /R A ) <-> 0 < ( A x. ( 1 /R A ) ) ) )
9 6 8 mpbird
 |-  ( ph -> 0 < ( 1 /R A ) )