Description: The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-recgt0d.a | |- ( ph -> A e. RR ) |
|
| sn-recgt0d.z | |- ( ph -> 0 < A ) |
||
| Assertion | sn-recgt0d | |- ( ph -> 0 < ( 1 /R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-recgt0d.a | |- ( ph -> A e. RR ) |
|
| 2 | sn-recgt0d.z | |- ( ph -> 0 < A ) |
|
| 3 | sn-0lt1 | |- 0 < 1 |
|
| 4 | 2 | gt0ne0d | |- ( ph -> A =/= 0 ) |
| 5 | 1 4 | rerecid | |- ( ph -> ( A x. ( 1 /R A ) ) = 1 ) |
| 6 | 3 5 | breqtrrid | |- ( ph -> 0 < ( A x. ( 1 /R A ) ) ) |
| 7 | 1 4 | sn-rereccld | |- ( ph -> ( 1 /R A ) e. RR ) |
| 8 | 1 7 2 | mulgt0b1d | |- ( ph -> ( 0 < ( 1 /R A ) <-> 0 < ( A x. ( 1 /R A ) ) ) ) |
| 9 | 6 8 | mpbird | |- ( ph -> 0 < ( 1 /R A ) ) |