Metamath Proof Explorer


Theorem sorpssint

Description: In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpssint ( [] Or 𝑌 → ( ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌 ) )

Proof

Step Hyp Ref Expression
1 intss1 ( 𝑢𝑌 𝑌𝑢 )
2 1 3ad2ant2 ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑣𝑢 ) → 𝑌𝑢 )
3 sorpssi ( ( [] Or 𝑌 ∧ ( 𝑢𝑌𝑣𝑌 ) ) → ( 𝑢𝑣𝑣𝑢 ) )
4 3 anassrs ( ( ( [] Or 𝑌𝑢𝑌 ) ∧ 𝑣𝑌 ) → ( 𝑢𝑣𝑣𝑢 ) )
5 sspss ( 𝑣𝑢 ↔ ( 𝑣𝑢𝑣 = 𝑢 ) )
6 orel1 ( ¬ 𝑣𝑢 → ( ( 𝑣𝑢𝑣 = 𝑢 ) → 𝑣 = 𝑢 ) )
7 eqimss2 ( 𝑣 = 𝑢𝑢𝑣 )
8 6 7 syl6com ( ( 𝑣𝑢𝑣 = 𝑢 ) → ( ¬ 𝑣𝑢𝑢𝑣 ) )
9 5 8 sylbi ( 𝑣𝑢 → ( ¬ 𝑣𝑢𝑢𝑣 ) )
10 9 jao1i ( ( 𝑢𝑣𝑣𝑢 ) → ( ¬ 𝑣𝑢𝑢𝑣 ) )
11 4 10 syl ( ( ( [] Or 𝑌𝑢𝑌 ) ∧ 𝑣𝑌 ) → ( ¬ 𝑣𝑢𝑢𝑣 ) )
12 11 ralimdva ( ( [] Or 𝑌𝑢𝑌 ) → ( ∀ 𝑣𝑌 ¬ 𝑣𝑢 → ∀ 𝑣𝑌 𝑢𝑣 ) )
13 12 3impia ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑣𝑢 ) → ∀ 𝑣𝑌 𝑢𝑣 )
14 ssint ( 𝑢 𝑌 ↔ ∀ 𝑣𝑌 𝑢𝑣 )
15 13 14 sylibr ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑣𝑢 ) → 𝑢 𝑌 )
16 2 15 eqssd ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑣𝑢 ) → 𝑌 = 𝑢 )
17 simp2 ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑣𝑢 ) → 𝑢𝑌 )
18 16 17 eqeltrd ( ( [] Or 𝑌𝑢𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑣𝑢 ) → 𝑌𝑌 )
19 18 rexlimdv3a ( [] Or 𝑌 → ( ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌 ) )
20 intss1 ( 𝑣𝑌 𝑌𝑣 )
21 ssnpss ( 𝑌𝑣 → ¬ 𝑣 𝑌 )
22 20 21 syl ( 𝑣𝑌 → ¬ 𝑣 𝑌 )
23 22 rgen 𝑣𝑌 ¬ 𝑣 𝑌
24 psseq2 ( 𝑢 = 𝑌 → ( 𝑣𝑢𝑣 𝑌 ) )
25 24 notbid ( 𝑢 = 𝑌 → ( ¬ 𝑣𝑢 ↔ ¬ 𝑣 𝑌 ) )
26 25 ralbidv ( 𝑢 = 𝑌 → ( ∀ 𝑣𝑌 ¬ 𝑣𝑢 ↔ ∀ 𝑣𝑌 ¬ 𝑣 𝑌 ) )
27 26 rspcev ( ( 𝑌𝑌 ∧ ∀ 𝑣𝑌 ¬ 𝑣 𝑌 ) → ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 )
28 23 27 mpan2 ( 𝑌𝑌 → ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 )
29 19 28 impbid1 ( [] Or 𝑌 → ( ∃ 𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌 ) )