| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssunsn2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∨ ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) ) |
| 2 |
|
ancom |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
| 3 |
|
eqss |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
| 4 |
2 3
|
bitr4i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ↔ 𝐴 = 𝐵 ) |
| 5 |
|
ancom |
⊢ ( ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ∧ ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ) ) |
| 6 |
|
eqss |
⊢ ( 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ∧ ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ) ) |
| 7 |
5 6
|
bitr4i |
⊢ ( ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) |
| 8 |
4 7
|
orbi12i |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∨ ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ) |
| 9 |
1 8
|
bitri |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ) |