| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snssi |
⊢ ( 𝐷 ∈ 𝐴 → { 𝐷 } ⊆ 𝐴 ) |
| 2 |
|
unss |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ { 𝐷 } ⊆ 𝐴 ) ↔ ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) |
| 3 |
2
|
bicomi |
⊢ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ { 𝐷 } ⊆ 𝐴 ) ) |
| 4 |
3
|
rbaibr |
⊢ ( { 𝐷 } ⊆ 𝐴 → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |
| 7 |
2
|
biimpi |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ { 𝐷 } ⊆ 𝐴 ) → ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) |
| 8 |
7
|
expcom |
⊢ ( { 𝐷 } ⊆ 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 9 |
1 8
|
syl |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 10 |
|
ssun3 |
⊢ ( 𝐴 ⊆ 𝐶 → 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) |
| 11 |
10
|
a1i |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ 𝐶 → 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) |
| 12 |
9 11
|
anim12d |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |
| 13 |
|
pm4.72 |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ↔ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 14 |
12 13
|
sylib |
⊢ ( 𝐷 ∈ 𝐴 → ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 15 |
6 14
|
bitrd |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 16 |
|
uncom |
⊢ ( { 𝐷 } ∪ 𝐶 ) = ( 𝐶 ∪ { 𝐷 } ) |
| 17 |
16
|
sseq2i |
⊢ ( 𝐴 ⊆ ( { 𝐷 } ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) |
| 18 |
|
ssundif |
⊢ ( 𝐴 ⊆ ( { 𝐷 } ∪ 𝐶 ) ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) |
| 19 |
17 18
|
bitr3i |
⊢ ( 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) |
| 20 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐷 } ) = ∅ ↔ ¬ 𝐷 ∈ 𝐴 ) |
| 21 |
|
disj3 |
⊢ ( ( 𝐴 ∩ { 𝐷 } ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ { 𝐷 } ) ) |
| 22 |
20 21
|
bitr3i |
⊢ ( ¬ 𝐷 ∈ 𝐴 ↔ 𝐴 = ( 𝐴 ∖ { 𝐷 } ) ) |
| 23 |
|
sseq1 |
⊢ ( 𝐴 = ( 𝐴 ∖ { 𝐷 } ) → ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) ) |
| 24 |
22 23
|
sylbi |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) ) |
| 25 |
19 24
|
bitr4id |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ↔ 𝐴 ⊆ 𝐶 ) ) |
| 26 |
25
|
anbi2d |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) |
| 27 |
3
|
simplbi |
⊢ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 → 𝐵 ⊆ 𝐴 ) |
| 28 |
27
|
a1i |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 → 𝐵 ⊆ 𝐴 ) ) |
| 29 |
25
|
biimpd |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) → 𝐴 ⊆ 𝐶 ) ) |
| 30 |
28 29
|
anim12d |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) |
| 31 |
|
pm4.72 |
⊢ ( ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ∨ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) ) |
| 32 |
30 31
|
sylib |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ∨ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) ) |
| 33 |
|
orcom |
⊢ ( ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ∨ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |
| 34 |
32 33
|
bitrdi |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 35 |
26 34
|
bitrd |
⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 36 |
15 35
|
pm2.61i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |