| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝐷  ∈  𝐴  →  { 𝐷 }  ⊆  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							unss | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  { 𝐷 }  ⊆  𝐴 )  ↔  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 )  | 
						
						
							| 3 | 
							
								2
							 | 
							bicomi | 
							⊢ ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ↔  ( 𝐵  ⊆  𝐴  ∧  { 𝐷 }  ⊆  𝐴 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							rbaibr | 
							⊢ ( { 𝐷 }  ⊆  𝐴  →  ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							syl | 
							⊢ ( 𝐷  ∈  𝐴  →  ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi1d | 
							⊢ ( 𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							biimpi | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  { 𝐷 }  ⊆  𝐴 )  →  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							expcom | 
							⊢ ( { 𝐷 }  ⊆  𝐴  →  ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							syl | 
							⊢ ( 𝐷  ∈  𝐴  →  ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ssun3 | 
							⊢ ( 𝐴  ⊆  𝐶  →  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝐷  ∈  𝐴  →  ( 𝐴  ⊆  𝐶  →  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							anim12d | 
							⊢ ( 𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  →  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							pm4.72 | 
							⊢ ( ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  →  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) )  ↔  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylib | 
							⊢ ( 𝐷  ∈  𝐴  →  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							bitrd | 
							⊢ ( 𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							uncom | 
							⊢ ( { 𝐷 }  ∪  𝐶 )  =  ( 𝐶  ∪  { 𝐷 } )  | 
						
						
							| 17 | 
							
								16
							 | 
							sseq2i | 
							⊢ ( 𝐴  ⊆  ( { 𝐷 }  ∪  𝐶 )  ↔  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ssundif | 
							⊢ ( 𝐴  ⊆  ( { 𝐷 }  ∪  𝐶 )  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							bitr3i | 
							⊢ ( 𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } )  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 )  | 
						
						
							| 20 | 
							
								
							 | 
							disjsn | 
							⊢ ( ( 𝐴  ∩  { 𝐷 } )  =  ∅  ↔  ¬  𝐷  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								
							 | 
							disj3 | 
							⊢ ( ( 𝐴  ∩  { 𝐷 } )  =  ∅  ↔  𝐴  =  ( 𝐴  ∖  { 𝐷 } ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							bitr3i | 
							⊢ ( ¬  𝐷  ∈  𝐴  ↔  𝐴  =  ( 𝐴  ∖  { 𝐷 } ) )  | 
						
						
							| 23 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝐴  =  ( 𝐴  ∖  { 𝐷 } )  →  ( 𝐴  ⊆  𝐶  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylbi | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( 𝐴  ⊆  𝐶  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 ) )  | 
						
						
							| 25 | 
							
								19 24
							 | 
							bitr4id | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( 𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } )  ↔  𝐴  ⊆  𝐶 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							anbi2d | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) )  | 
						
						
							| 27 | 
							
								3
							 | 
							simplbi | 
							⊢ ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  →  𝐵  ⊆  𝐴 )  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  →  𝐵  ⊆  𝐴 ) )  | 
						
						
							| 29 | 
							
								25
							 | 
							biimpd | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( 𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } )  →  𝐴  ⊆  𝐶 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							anim12d | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  →  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							pm4.72 | 
							⊢ ( ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  →  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ↔  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ∨  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sylib | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ↔  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ∨  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							orcom | 
							⊢ ( ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ∨  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							bitrdi | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) )  | 
						
						
							| 35 | 
							
								26 34
							 | 
							bitrd | 
							⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) )  | 
						
						
							| 36 | 
							
								15 35
							 | 
							pm2.61i | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) )  |