| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recld2.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
1
|
zcld2 |
⊢ ℤ ∈ ( Clsd ‘ 𝐽 ) |
| 3 |
|
id |
⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ ) |
| 4 |
|
zex |
⊢ ℤ ∈ V |
| 5 |
|
difss |
⊢ ( ℤ ∖ 𝐴 ) ⊆ ℤ |
| 6 |
4 5
|
elpwi2 |
⊢ ( ℤ ∖ 𝐴 ) ∈ 𝒫 ℤ |
| 7 |
1
|
zdis |
⊢ ( 𝐽 ↾t ℤ ) = 𝒫 ℤ |
| 8 |
6 7
|
eleqtrri |
⊢ ( ℤ ∖ 𝐴 ) ∈ ( 𝐽 ↾t ℤ ) |
| 9 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 10 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
| 11 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ℤ ⊆ ℂ ) → ( 𝐽 ↾t ℤ ) ∈ ( TopOn ‘ ℤ ) ) |
| 12 |
9 10 11
|
mp2an |
⊢ ( 𝐽 ↾t ℤ ) ∈ ( TopOn ‘ ℤ ) |
| 13 |
12
|
topontopi |
⊢ ( 𝐽 ↾t ℤ ) ∈ Top |
| 14 |
12
|
toponunii |
⊢ ℤ = ∪ ( 𝐽 ↾t ℤ ) |
| 15 |
14
|
iscld |
⊢ ( ( 𝐽 ↾t ℤ ) ∈ Top → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ↔ ( 𝐴 ⊆ ℤ ∧ ( ℤ ∖ 𝐴 ) ∈ ( 𝐽 ↾t ℤ ) ) ) ) |
| 16 |
13 15
|
ax-mp |
⊢ ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ↔ ( 𝐴 ⊆ ℤ ∧ ( ℤ ∖ 𝐴 ) ∈ ( 𝐽 ↾t ℤ ) ) ) |
| 17 |
3 8 16
|
sylanblrc |
⊢ ( 𝐴 ⊆ ℤ → 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ) |
| 18 |
|
restcldr |
⊢ ( ( ℤ ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |
| 19 |
2 17 18
|
sylancr |
⊢ ( 𝐴 ⊆ ℤ → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |