Metamath Proof Explorer


Theorem stgoldbnnsum4prm

Description: If the (strong) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes. (Contributed by AV, 27-Jul-2020)

Ref Expression
Assertion stgoldbnnsum4prm ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚𝑚 ∈ GoldbachOdd ) → ∀ 𝑛 ∈ ( ℤ ‘ 2 ) ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓𝑘 ) ) )

Proof

Step Hyp Ref Expression
1 stgoldbwt ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚𝑚 ∈ GoldbachOdd ) → ∀ 𝑚 ∈ Odd ( 5 < 𝑚𝑚 ∈ GoldbachOddW ) )
2 wtgoldbnnsum4prm ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀ 𝑛 ∈ ( ℤ ‘ 2 ) ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓𝑘 ) ) )
3 1 2 syl ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚𝑚 ∈ GoldbachOdd ) → ∀ 𝑛 ∈ ( ℤ ‘ 2 ) ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓𝑘 ) ) )